Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный магнитный параметр

    Ядерный магнитный резонанс веществ, находящихся в растворе, позволил исследовать параметры спектра и получил название ЯМР-сиектроскопии высокого разрешения. К середине 50-х годов-были разработаны теоретические принципы применения метода для самых разнообразных задач химии. В настоящее время быстро развивающаяся техника и методы эксперимента в ЯМР-спектроско-пни выявили необходимость использования импульсных методов, наряду со стационарными. Разработка серийных устройств, регистрирующих спектры высокого разрешения методом Фурье преобразования, дало возможность сократить время эксперимента и в ряде случаев получать более обширную информацию по сравнению с неимпульсными методиками. Метод ЯМР (как в импульсном, так и в стационарном варианте) позволяет определить константы равновесия, константы скоростей и термодинамические хара ктеристики процессов комнлексообразования, конформационных переходов и протонного обмена. [c.253]


    Группы пиков на рис. 9.3-1 обладают характеристической структурой квадруплет, синглет и триплет (слева направо). Кроме того, мы видим, что внутри квадруплета и триплета пики равноудалены друг от друга. Расщепление на характеристические мультиплеты вызвано взаимодействием между ядерными магнитными диполями, разделенными малым количеством химических связей. Этот эффект называется спин-спиновым взаимодействием и характеризуется константой спин-спинового взаимодействия. Эта константа представляет собой второй спектральный параметр. В ней содержится информация, которая помогает оценить строение, конфигурацию и конформацию молекулы. [c.202]

    Ориентация в полимерах обычно изучается методами двойного лучепреломления, инфракрасного дихроизма, рентгеновской дифракции под большими и малыми углами, ядерного магнитного резонанса и др. Необходимость применения одновременно многих методов диктуется их различной чувствительностью к ориентации цепей в целом и дискретных элементов структуры и, соответственно, различным характером усреднения при численном выражении параметров ориентации. [c.185]

    Центральная проблема, обсуждаемая в настоящей главе, формулируется следующим образом как можно получить спектральные параметры— химические сдвиги и константы спин-спинового взаимодействия — из спектров ядерного магнитного резонанса Для того чтобы ответить на этот вопрос, необходимо знать принципы расчета спектров ЯМР высокого разрешения. Поэтому вначале мы ответим на вопрос каким образом можно определить частоты и интенсивности линий спектра, если известен набор химических сдвигов и констант спин-спинового взаимодействия Итак, прежде чем рассмотреть анализ спектров, нам необходимо понять, как происходит синтез спектров. [c.142]

    Как уже отмечалось во введении и предыдущих главах, спектроскопию ядерного магнитного резонанса можно использовать для изучения быстрых обратимых реакций. Форма линий сигналов ЯМР чувствительна к процессам химического обмена, если эти процессы оказывают влияние на параметры ЯМР изучаемого ядра. Поэтому спектры ЯМР многих соединений зависят от температуры В последующих разделах мы обсудим физическую сущность этого явления, которое называют сейчас динамическим ЯМР, и проиллюстрируем его применение в органической химии иа конкретных примерах. [c.252]


    Как известно, широкое применение для исследования свойств воды находит метод ядерного магнитного резонанса (ЯМР) на ядрах атомов водорода и кислорода О), имеющих ненулевой спин. Этот метод часто применяют для изучения состояния и свойств воды в пористых телах. Однако при этом возникают трудности интерпретации получаемых данных, что связано с существенным влиянием процессов, обусловленных гетерогенностью системы, наличием тонкодисперсной твердой фазы. Только правильный учет всех обсуждаемых в первом разделе многочисленных мешающих факторов позволяет получать надежную информацию о свойствах связанной воды толщине граничных слоев, параметрах ориентационного порядка и подвижности молекул. Обсуждается также и ряд еще нерешенных задач спектроскопии ЯМР. [c.228]

    Установление структуры, требующее для своего решения определения многих спектральных параметров, например, констант скоростей ядерной магнитной релаксации (всех резонансных пиков), межъядерных расстояний и других в зависимости от сложности структуры конкретной молекулы. [c.4]

    По расположению датчиков относительно объекта контроля различают три основных варианта одностороннее расположение, двустороннее и под прямым углом оптических осей друг к другу (способ фиксации параметров рассеянного излучения). Резонансные СВЧ-методы делятся по виду резонансного эффекта (электронный п амаг-нитный, ядерный магнитный, ферромагнитный и др.). [c.429]

    Связь этих уравнений с экспериментальными параметрами ядерного магнитного резонанса становится яснее, если вместо неподвижной лабораторной системы координат х, у, z использовать систему координат, вращающуюся вместе с полем Н с угловой скоростью — 0) вокруг оси 2. В такой вращающейся системе координат Яо и Н неподвижны. Мы можем разложить проекцию момента М на плоскость ху на компоненты и и v, причем и совпадает, а V перпендикулярна Яь т. е. и находится в фазе с Яь а u опережает его на 90° (рис. 1.10). Для выполнения необходимого преобразования заметим, что [c.31]

    Реологические и вязкоупругие свойства полимеров и их концентрированных растворов связаны с образованием в них сеток и систем с временными поперечными связями, переплетениями или зацеплениями. Подобно температуре стеклования характеристическая длина участка цепи между зацеплениями является одной из общих характеристик аморфных п лимерных систем. Параметры зацеплений и длины участков цепей между зацеплениями определяются на основании реологических и вязкоупругих свойств, времени релаксации, найденного методом ядерного магнитного резонанса (ЯМР). [c.205]

    Спектроскопия ядерного магнитного резонанса. Для расчета констант устойчивости могут быть использованы следующие три параметра, получаемые из спектров ЯМР химический сдвиг, константы спин-спинового взаимодействия и время релаксации в присутствии парамагнитных ионов. Наиболее часто используются первые два параметра. [c.148]

    В книге Методы ядерного магнитного резонанса кратко рассматривается физическая сущность явления ЯМР и приводятся основные соотношения, определяющие параметры ЯМР-сигналов, рассматриваются в отдельности спин-детекторы, усилители, фазовые детекторы, генераторы, стабилизированные источники питания и схемы, применяемые для стабилизации режимов. [c.4]

    Может быть показано, что принципиальным типом связи ядер-ных квадрупольных состояний и электромагнитного поля является магнитное взаимодействие. Поэтому методы измерения ядерного квадрупольного резонанса в принципе те же, что и применяемые для ядерного магнитного резонанса. Вещество помещается в катушку, через которую пропускается ток радиочастоты. Существенная разница состоит в том, что в случае ядерного квадрупольного резонанса частота целиком определяется веществом, вследствие чего мостиковые методы не применимы, так как они включают одновременную регулировку различных параметров цепи. Наиболее удобным и распространенным методом является использование частотно-модулированного суперрегенеративного осциллятора и помещение образца в змеевиковый виток колебательного контура настроенной схемы. Выпрямленное выходное напряжение проявляется затем на осциллоскопе, и резонансный сигнал находится путем измерения частоты осциллятора. Чувствительность метода может быть повышена путем пропускания выходного напряжения через узкополосный усилитель, синхронный детектор и регистрирующий милливольтметр. Суперрегенеративный осциллятор не часто использовался для низких частот, необходимых в случае азота, однако, по-видимому, нет никаких причин, в силу которых он был бы менее эффективным, чем регенеративные осцилляторы, применение которых дает такие неудовлетворительные результаты. [c.403]

    Внешнее магнитное поле стремится ориентировать магнитный момент параллельно или антипараллельно направлению этого поля Однако из-за наличия у ядра механического момента в результате взаимодействия с магнитным полем ось вращения ядра описывает коническую поверхность вокруг направления внешнего поля, как показано на рис. 3-1. Движение такого типа называется прецессией. Примером гироскопического движения этого типа может служить поведение обыкновенного волчка, который начинает прецессировать. если его первоначально запустили с направлением оси вращения, отличным от направления гравитационного поля земли. Как будет видно из дальнейшего изложения, частота прецессии является одним из основных параметров, описывающих явление ядерного магнитного резонанса. [c.70]


    В настоящее время при исследовании строения органических веществ особенно широко используются электромагнитные колебания с длиной волны от миллиардных долей сантиметра до нескольких метров Дифракция рентгеновских лучей (Л = 0,1—0,01 10" см) в кристаллах используется для определения межатомных расстояний и других параметров кристаллической решетки. Электромагнитные колебания ультрафиолетовой (Л = 10" —4-10" см), видимой (К = 4-1(Г<—7-10" см) и инфракрасной = 7-Ю- -10- см) областей спектра используются для определения тонкого строения молекул. Микроволновые колебания (/ = 10 —10 см) характеризуют вращение молекул. Сантиметровые и метровые волны используются для определения строения органических соединений с одновременным воздействием на них электромагнитного поля (электронный парамагнитный и ядерный магнитный резонанс). [c.19]

    По нашему мнению, продолжительность жизни молекулы воды в гидратационном слое по порядку величины составляет 10 с, т. е. примерно в 100 раз больше, чем время, требуемое для молекулы воды, чтобы разорвать и снова образовать несколько водородных связей, которые ограничивают ее движение в чистом растворителе. Тем не менее это время достаточно мало, чтобы его можно было рассматривать как характеристическое время для движения молекул жидкости. Разъяснение данной точки зрения и другие аспекты динамики взаимодействий вода — белок и белок — вода — белок в растворах белков и являются предметом настоящей статьи. Ниже представлены данные и выводы, следующие из результатов использования очень эффективного экспериментального метода, который, не будучи уже новым, применяется только в нашей и еще очень немногих лабораториях. Авторы измерили зависимость скорости магнитной спин-решеточной релаксации ядер растворителя (воды) в растворах белка от величины магнитного поля. Этому методу дали сокращенное название ЯМР-д (дисперсия ядерной магнитной релаксации). Опыты по ЯМР-д показали, что на быстрое вращательное броуновское движение молекул растворителя (воды) накладывается в результате функционирования механизма взаимодействия (еще не вполне понятого) очень небольшая по величине компонента, которая имитирует намного более медленное вращательное движение молекул белка [6, 7]. Кроме того, в экспериментах по ЯМР-д измеряются усредненные свойства всех молекул растворителя, так что время жизни молекул воды в гидратационном слое выступает в качестве естественного параметра во многих моделях, которые объясняют эти данные. Можно добавить, что данные по ЯМР-д прямо указывают на довольно быстрое ориентационное броуновское движение. Поэтому появляется возможность изучения микроскопической вязкости растворителя вблизи белковой молекулы в широком диапазоне значений pH, в присутствии различных буферов и т. д., что не всегда удается сделать с помощью других методов. [c.162]

    В анализе, основанном на ядерном магнитном резонансе, используются два параметра химический сдвиг и константа спин-спинового взаимодействия. [c.45]

    Выше были кратко описаны некоторые методы качественного анализа, основанные на использовании таких ядерных параметров, как масса (атома или иона, т. е. собственно ядра) или магнитный момент. Эти методы — масс-спектрометрия и ядерный магнитный резонанс — имеют огромное значение в современном качественном анализе, поскольку он в настоящее время является не только элементным, но и молекулярным, и структурным. [c.205]

    В таблицах межатомных расстояний и других геометрических параметров, охватывающих работы по 1955 г. (см. далее, стр. 179), основная масса приведенных данных получена рассмотренными выше методами. Однако кроме них приводятся результаты изучения геометрии молекул, при котором применялись также нейтронографический, ЯМР (ядерный магнитный резонанс) и другие, не упомянутые выше, спектроскопические методы, а также качественные методы для установления геометрии молекул. [c.178]

    При регистрации и обработке спектров ядерного магнитного резонанса нужно прежде всего иметь в виду, что теоретически точный вид спектра может быть получен лишь при бесконечно малой амплитуде возбуждающего поля и бесконечно малой скорости прохождения через резонансную область. Так как практически эти величины по необходимости конечны и так как существует еще ряд факторов, которые могут исказить спектр (неоднородность и нестабильность поляризующего поля, нестабильность частоты и амплитуды возбуждающего поля, наличие модуляции, настройка приемных устройств спектрометра, конечная величина постоянной времени синфазного детектора, шумы электронных схем и т. д.), то регистрируемый спектр будет лишь хорошим или плохим приближением к действительному. Степень этого приближения зависит от того, насколько правильно сумеет исследователь выбрать те параметры эксперимента, управление которыми находится в его руках, и учесть те, которыми он не может распорядиться. [c.120]

    Известны ряды заместителей, установленные по а) скорсстя.м нитрования замещенных бензола- или скоростям нуклеофильного обмена галогена в различных галогенопроизводных бензольного ряда б) величинам дипольных моментов производных метана и бензола в) ра змерностям ядерного магнитного параметра о, характеризующего электронные плотности у орто- мета- и пара-углеродных атомов в различных бензольных монозамещенных г) значениям константы Гамета, типичной для заместителей, связанных с бензольным кольцом.  [c.156]

    Значения времени релаксации Т1 и Тг, характерные для жидкостей в порах твердых тел, накладывают определенные требования на конструкцию и параметры применяемой аппаратуры. На величину времени релаксации жидкостей можно в определенной степени влиять растворением парамагнитных солей. Добавление парамагнитных ионов может сократить время релаксации протонов на несколько порядков. Это явление используется при лабораторных измерениях и в широком масштабе при промысловых испытаниях аппаратуры ядерного магнитного каро-тажа для подавления сигнала от бурового раствора. [c.101]

    В заключение следует остановиться еще на одном аналитическом аспекте метода ЯМР. Как уже отмечалось, ядерная магнитная релаксация является фундаментальным свойством ядерного магнетизма, характеризующим динамику системы спинов. Вместе с тем высокая информативность параметров ядерной магнитной релаксации о свойствах исследуемого вещества, сравнительная простота их экспериментального определения, а также надежность теоретической интерпретации данных дают основание выделить это направление ЯМР в качестве самостоятельного физического метода исследования вещества — ядерную магнитную релаксационную спектроскопию, некоторые интересуюп ие нас особенности которой описаны в 5. [c.738]

    Основу применения спектроскопии протонного магнитного резонанса и в общем ядерного магнитного резонансг (ЯМР) для определения структуры неизвестных веществ составляют эмпирически найденные корреляции между спектральными параметрами, химическим сдвигом и спин-спиновым взаи модействием, с одной стороны, и строением образца — с дру гой. В этом отношении ядерный магнитный момент оказалс5 [c.12]

    Ig г/ j/Yba от в с осью ординат [53]. с другой стороны, можно рассмотреть зависимость Ig К Ува от величин [г + (1 — г)ао]5, рассчитанных для соответствующих значений параметра г, подобранных так, чтобы получить прямую линию [76]. Значение " Ki также определяется из пересечения с осью ординат. Наклон линии и значение г определяются коэффициентами высаливания различных форм. Эти методы применялись главным образом к сильным кислотам, для которых значения ао получали с помощью рамановских спектров или ядерного магнитного резонанса (см. разд. 3 и 4 гл. 13) и для которых значения унабл имелись в литературе. [c.52]

    Изменение состояния веществ в результате растворения особенно ясно раскрывается при помощи современных методов спектрального анализа и, в частности, путем изучения ядерно-магнитного резонанса. Оказывается, что даже при тонком анализе структуры растворов мы встречаемся со свойствами, являющимися периодическими функциями. Так, например, Р. Экст-ман [83] обнаруживает связь между сдвигом линий протонного резонанса в водных растворах солей элементов второй группы Периодической системы и положением этих элементов в Периодической системе. Особенно детально анализируется вопрос о взаимосвязи между положением элемента в Периодической системе и протонным резонансом в работе И. Хиндмана [62], где приводится ряд параметров, относящихся к ионам элементов первой группы, которые свидетельствуют о связи этих величии с периодическим законом. Таким образом, мы убеждаемся,что и в исследованиях такого рода может оказаться плодотворной опора на периодический закон. [c.22]

    В этой работе рассмотрены постоянные взаимодействия между ядерным и электронным магнитными моментами, проявляющиеся в спектрах ЭПР, и постоянные взаимодействия между двумя ядерными магнитными моментами, наблюдаемые в спектрах ЯМР. Известны трудности расчетов этих величин по простым аддитивным схемам, однако в целом пока еще не ясно, насколько более сложные формулы, включающие трансферабельные параметры, применимы для этих целей. [c.326]

    ЯМР-1а — метод ядерного магнитного резонанса К = — v)/ v —, тяе и Vg — химические сдвиги соответственно цис- и тпранс-4-(СНз)зССбНюХ. В работе [29] в качестве и использованы вычисленные параметры. Метод ЯМР-16 аналогичен методу ЯМР-1а с той разницей, что Vд и получены из спектра Х-замещенного циклогексана при низкой температуре. [c.520]

    Большую роль в исследовании водородной связи пространственно-затрудненных фенолов сыграл метод ядерного магнитного резонанса. Основными параметрами при этом являются химический сдвиг протона, участвующего в образовании водородной связи, а также зависимость величины химического сдвига от концентрации исследуемого вещества в различных растворителях. По мере разбавления раствора в инертном растворителе или при по-. вышении температуры происходит разрыв водородных связей, и сигнал смещается в сторону высоких полей. Наличие водородной связи, наоборот, вызывает смещение сигнала в область низких полей, т. е. происходит уменьшение магнитного экранирования протона гидроксильной группы. Анализ причин, вызывающих изменение магнитного экранирования протона показал , что основными из них являются изменения полярности связи О—Н (сдвиг центра тяжести электронного облака в сторону атома кислорода) и образование донорно-акцепторной связи Аг—О—Н - Х—К (сдвиг неподеленной пары электронов атома X в сторону атома водорода). [c.23]

    Найдено, что температурная зависимость вязкости расплавов ЭД с М = 376—3020 в диапазоне + 15 К 120 К определяется уравнением Фогеля — Фалчера — Таммана. Аналогично описываются и другие релаксационные параметры ЭД — время ядерной магнитной поперечной релак- [c.35]


Смотреть страницы где упоминается термин Ядерный магнитный параметр: [c.97]    [c.641]    [c.63]    [c.79]    [c.276]    [c.120]    [c.219]    [c.316]    [c.54]    [c.279]    [c.28]    [c.76]    [c.26]   
Основы синтеза промежуточных продуктов и красителей Издание 4 (1955) -- [ c.52 ]




ПОИСК







© 2025 chem21.info Реклама на сайте