Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы исследования строения вещества

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ СТРОЕНИЯ ВЕЩЕСТВА [c.146]

    Поскольку физико-химическая природа вещества определяется его структурой, в химии исключительно важную роль играют методы установления химического и кристаллохимического строения. До создания современных физических методов исследования химического и кристаллохимического строения вещества для получения информации о структуре соединений пользовались методом химических реакций (механизм и скорость реакций). На этом пути были сделаны определенные успехи. Достаточно напомнить классические исследования по геометрической и оптической изомерии неорганических и органических соединений. Однако, основываясь на химических методах, в принципе нельзя получить количественные данные по длинам химических связей, а также углов между ними. Между тем количественные характеристики по длинам химических связей и пространственной их направленности являются походными данными для определения химического и кристаллохимического строения веществ. [c.173]

    Очевидно, именно в этой области, где накопилось больше всего фактов, не укладывающихся в рамки существующих теорий, и следует ожидать (ср. [9, стр. 380]) наиболее важных успехов для развития всей структурной теории в органической химии. Хотя в последней как бы сосуществуют классическая теория химического строения, классическая стереохимия, электронные теории строения и учение о геометрии молекул (по данным современных физических методов исследования строения вещества), но в той части структурной теории, которую мы называем современной стереохимией, они скорее слиты воедино и поэтому очевидно, что именно в ее рамках можно получить наиболее глубокое проникновение в строение органических молекул. [c.354]

    Строение молекул изучают физическим и химическим методами. Из физических свойств наибольшее значение имеют погло-ш,ение и отражение различных излучений (рентгеновские, электронные, нейтронные лучи), спектры поглощения и испускания широкого диапазона частот, магнитные и электрические взаимодействия (магнитная восприимчивость и проницаемость, электрические моменты диполей и поляризация), механические, тепловые, электрические и др. Для заключения о строении вещества сопоставляют информацию, полученную разными методами. Рассмотрим некоторые физические методы исследования. [c.63]


    Развитие современной кристаллохимии приводит к все большему использованию структурных данных в общей химии. Кристаллохимия, устанавливая взаимное влияние химически однородных атомов при образовании химической связи в кристаллических соединениях, объясняет тем самым зависимость физикохимических свойств от структуры и связывает структуру с основным химическим свойством—реакционной способностью. Поэтому использование закономерностей кристаллохимии открывает эффективные пути синтеза химических соединений с любыми наперед заданными свойствами. В отличие от других физических методов исследования строения вещества, применение рентгенографического метода исследования атомной структуры кристаллов позволяет определять строение сложных соединений, создаваемых синтетической химией. [c.144]

    Первые физические методы установления строения вещества возникли в 1912 г. с началом применения дифракции рентгеновского излучения для структурного анализа. В настоящее время для исследования химического и кристаллохимического строения веществ применяются дифракционные, спектроскопические, резонансные и другие физические методы. Многие из этих методов дают возможность получать информацию о более тонких вопросах химического и кристаллохимического строения вещества распределении электронной плотности и степени ионности связи, эффективных зарядах атомов, валентных состояниях атомов химических элементов, входящих в соединение, и т. п. Кроме того, физические методы принципиально отличаются от химических тем, что они являются неразрушающими, т. е. в процессе исследования химическое и кристаллохимическое строение вещества не изменяется. [c.173]

    Физическая химия возникла и развивалась первоначально на основе применения физических методов исследования для изучения химических свойств веществ, а также изучения влияния химического состава веществ и их строения на физические свойства. Впоследствии, обобщая собственные теоретические и практические выводы, физическая химия продолжала развиваться самостоятельно. [c.6]

    Результаты физических методов исследования строения вещества позволяют построить модель любой органической молекулы, во всяком случае модель первого приближения. [c.7]

    Информацию о строении вещества можно получить, исследуя его физические и химические свойства. В частности, с помощью физических методов исследования определяют основные параметры молекул — межъядерные расстояния, валентные углы и геометрию молекул. [c.42]

    Для систематического изучения состава и строения органического вещества твердых топлив вначале использовались главным образом методы органической химии, отчасти коллоидной химии, с привлечением данных, полученных геологией и микробиологией. Химия и физика высокомолекулярных соединений и угольная петрография в этот период только начинали оформляться в качестве самостоятельных разделов науки. Еще недостаточно были развиты физико-химические и чисто физические методы исследования. В этот период объектом исследования преимущественно являлись торфы, бурые угли, горючие сланцы, сапропелиты, растения-угле-образователи и продукты полукоксования этого твердого топлива. Каменные угли из-за большого разнообразия и очень сложной структуры были изучены слабее. [c.5]

    Наиболее популярными физическими методами исследования строения веществ и межмолекулярных взаимодействий являются спектральные методы. [c.92]

    Теоретические методы физической х1- мии неразрывно связаны с использованием экспериментальных физических и химических методов. При исследовании строения вещества, структуры молекул, элементарных актов химического взаимодействия широко используются такие методы, как рентгенография, оптическая, радио- и масс-спектро-скопия, изотопные индикаторы, измерение дипольных моментов и т. д. Современные приборы и установки позволяют изучать вещество и его физико-химические превращения в условиях сверхвысоких и сверхнизких давлений и температур, в сильных электромагнитных и гравитационных полях и т. д. Обработка результатов опытов и решение ряда теоретических уравнений проводятся с широким привлечением электронных вычислительных машин. Тесное сочетание теории и экс- [c.6]

    Важную часть этого раздела составляет учение об агрегатных состояниях вещества, в котором рассматриваются взаимодействия молекул в газах, жидкостях и кристаллах, а также свойства веществ в различных агрегатных состояниях. Разработка и широкое применение физических методов исследования веществ рентгеноструктурного, электронографического, электронномикроскопического, оптического и других методов позволило получить ценные данные о строении жидкостей, а также твердых тел, как в кристаллическом, так и в аморфном состояниях. [c.7]


    В настоящее время инфракрасная спектроскопия стала одним из основных физических методов исследования в химии, с помощью которого можно решать задачи качественного и количественного анализа вещества и судить о строении молекул. Особенно широко используется инфракрасная спектроскопия в органической химии для структурно-группового анализа и идентификации самых различных соединений. При совместном рассмотрении инфракрасных спектров со спектрами комбинационного рассеяния, ультрафиолетовыми спектрами, спектрами ядерного магнитного резонанса и масс-спектрами можно определять строение и состав большинства органических соединений. Благодаря простоте и автоматизации получения спектров метод инфракрасной спектроскопии нашел широкое применение в научных лабораториях и служит надежным методом контроля на химическом производстве. [c.5]

    В результате этого спектр веш,ества в инфракрасной области дает сразу много сведений о наличии в веществе различных химических групп. Например, наличие атома кислорода в органическом соединении может означать присутствие в его составе спиртовой ОН, эфирной С — О — С, альдегидной, карбоксильной группы и ряда других. Чтобы установить наличие или отсутствие каждой из этих групп химическими методами, надо провести целую серию химических реакций, типичных для группы каждого типа. С помощью ИК-спектра этот вопрос решается сразу. Поэтому ИК-спектроскопия — один из важнейших физических методов исследования строения сложных молекул. [c.156]

    В настоящее время при изучении строения органических веществ все большее значение приобретают многочисленные физические методы исследования органических веществ рентгенография, электронография, спектроскопия и многие другие. [c.21]

    Книга является научной монографией, в которой изложена современная теория химической связи, а также приведены физические методы исследования строения молекул и кристаллов. Книга предназначается для научных работников химиков и физиков, работающих в области строения вещества, а также для студентов старших курсов вузов. [c.2]

    Однако нельзя провести точную границу между ионной связью, основанной только на электростатическом взаимодействии, и ковалентной полярной связью и можно оценивать только степень ионности. Существующие методы физических исследований строения вещества позволяют установить распределение электронной плотности в кристаллах ионного типа, причем оказалось, что нет участков в кристалле, где бы плотность электронов была равна нулю. Это указывает на то, что помимо изолированных положительно и отрицательно заряженных ионов К и Р еще существует часть атомов К и Р, объединенных ковалентными полярными связями и соответствующими общими орбиталями. [c.84]

    В последние годы все более широко используются каталитические методы очистки промышленных газов, поэтому большинство исследований посвящено созданию новых и усовершенствованию уже существующих катализаторов. Предвидение каталитического действия имеет такой же смыс.ч, что и предсказание скорости химических реакций, но более сложно из-за участия в процессах дополнительного компонента — катализатора. Поэтому приемы подбора катализаторов весьма разнообразны и основаны на эмпирических или полу-эмпирических методах [149—151] с использованием экспериментальных данных о взаимодействии реагирующих веществ с катализатором (энергия и энтропия хемосорбции, состав и строение продуктов поверхностного взаимодействия, полярность образующихся связей и т. д.). Перспективность этого пути обусловлена прогрессом в области физических методов исследования хемосорбции и катализа. [c.97]

    Кондуктометрия в физических и физико-химических исследованиях как один из методов исследования строения чистого вещества, растворов и кинетики физико-химических процессов. [c.88]

    В настоящее время широко применяются физические методы исследования для определения строения органических молекул рентгеноструктурный анализ, структурная электронография, инфракрасная спектроскопия, комбинационное рассеяние света, дипольные моменты, электронные спектры поглощения, электронный парамагнитный резонанс, ядерный магнитный резонанс. Теория химического строения раскрыла неисчерпаемые возможности для синтеза разнообразных органических веществ с заранее заданными свойствами. [c.306]

    Кропотливая работа по определению строения облегчается и применением других физических методов исследования. Эти методы также требуют небольших количеств исследуемого вещества, а полученные с их помощью данные позволяют для многих веществ окончательно доказать не только структуру, но и конфигурацию (пространственное строение). [c.338]

    Ниже рассмотрены основные инструментальные методы количественного исследования состава и строения угольных объектов, в основном характеризующие их количественно. Фундаментальные данные о элементном составе, молекулярном строении, микро- и макроструктуре, получаемые с помощью этих методов, позволяют уточнить классификацию углей. Техника определения брутто-характеристик угольных объектов (например, элементного состава) более точная и простая, чем определение дифференциальных характеристик, так как получение последних связано с необходимостью использовать приближения, допущения, аналогии и т. д. Однако именно дифференциальные характеристики дают информацию, наиболее полную и важную для понимания поведения объекта в химическом процессе. Поэтому в настоящее время основное внимание обращено на методы, которые детально характеризуют органическую массу угольного вещества без ее химической деструкции, т. е. физическим методам исследования самого угля. При этом следует помнить, что важную роль в процессах переработки угля играют присутствующие в нем неорганические примеси, оказывающие каталитическое действие, а также имеющие важное экологическое и сырьевое значение. Наконец, большое значение имеет знание надмолекулярной структуры угля, пористости, характера поверхности, содержание различных форм воды в нем. [c.65]

    Кроме того, все методы делятся на химические, физические и физико-химические [8]. На протяжении многих десятилетий, даже столетий, преобладали чисто химические методы, основанные на определении каких-либо атомов или групп атомов в составе данного вещества с помощью осаждения, взвешивания или титрования. Они могут быть качественными или количественными. Однако параллельно существовали, начиная со знаменитого опыта Архимеда по определению золота в короне, методы, которые мы сейчас называем физическими [4]. Все дискуссии по поводу сходства и различия химических и физических методов, - писал академик И.П. Алимарин, - основываются на ортодоксальном понимании этих двух наук и нежелании рассматривать их с единых современных позиций о строении материи и ее свойствах.. .. В науках (между науками) нет четких грашщ . На протяжении уже ряда десятилетий в развитии химии отчетливо проявляются тенденции к использованию различных физических методов исследования. Я полагаю, что в науке нет области с более обещающими открытиями, чем исследование химических явлений на основе физических методов и физических явлений , - говорил известный английский физик Дж. Томсон, открывший в начале XIX века электрон. [c.14]

    Во времена возникновения структурной теории А. М. Бутлерова бьша осознана важная истина о том, что строение молекулы определяет все ее химические свойства и по сумме химических свойств можно сделать верное заключение о структуре вещества. Эта истина ни в коей мере не потеряла своего значения в век физических методов исследования. Постоянными в химии остаются анализ и синтез, которые составляют, как известно, основу мыслительного процесса, основу всякого познания. Синтезируя все более и более сложные вещества, химик наперед знает исходные фрагменты, из которых формируется структура нового соединения. Поэтому он предполагает структуру заранее. После синтеза остается только ее доказать. [c.101]

    Ш. Жерар (1816—1856), основатель теории типов, а также его последователи считали, что структура молекул не может быть установлена путем изучения реакций вещества, так как молекула в реакции изменяется, становится иной. По их мнению, изучая химические свойства вещества, можно установить только его прошлое и будущее, но не настоящее. Правда, они допускали, что физические методы исследования в будущем дадут возможность определять строение молекул. Однако в то время физические методы исследований были крайне слабо развиты, и подобная постановка вопроса была равносильна отказу от исследования структуры молекул. [c.6]

    Спектрофотометрия — физический метод исследования, основанный на измерении спектров поглощения в УФ (200—400 нм), видимой (400-700 нм) и ИК (> 760 см ) областях спектра. В спектрофотометрии изучается зависимость интенсивности поглощения светового потока от длины волны. Находит широкое применение для изучения строения и состава молекул, для качественной идентификации и количественного анализа веществ. Измерения производят на приборах, называемых спектрофотометрами. [c.278]

    Для установления химического состава высокомолекулярных соединений используются обычные приемы элементарного анализа [1,2]. Что касается выяснения их строения, то задача оказалась настолько сложной, что до сих пор на страницах научных журналов не прекращается полемика по этому вопросу, несмотря на широкое привлечение для его разрешения новейших химических, физико-химических и физических методов исследования. Хотя подобные методы и сходны с теми, которые применяются при исследовании низкомолекулярных веществ, они все же отличаются некоторым своеобразием, связанным с особыми свойствами макромолекул, со сложной структурой их. Поэтому при попытке установить строение высокомолекулярных соединений нередко приходят к противоречивым результатам. [c.8]

    Физические методы исследования дают весьма ценные результаты также в тех случаях, когда приходится устанавливать тонкие различия в ха рактере связей между атомами вещества, которые обусловливают характерные различия в реакционной способности, наблюдаемые, например, в ароматических молекулах и в молекулах с сопряженными связями. Успех физического исследования в этих случаях обусловлен главным образом тем, что молекула в ходе такого исследования не изменяется, сохраняет свое строение. [c.14]

    В области экспериментальной техники новый этап развития, начавшийся в 30-е годы, характеризуется ускоренными темпами внедрения физических методов исследования вещества. Все большее значение приобретает количественная характеристика химических и физических свойств органических соединений, лавинообразно нарастает накопление соответствующих экспериментальных данных. Возникают и получают все большее развитие количественные соотношения, связывающие различные химические и физические свойства органических соединений с их строением, а также с природой среды, в которой они растворены. [c.7]

    Вот почему была и остается актуальной задача развития количественной стороны теории химического строения, обобщения не только результатов классических химических, но и всех других физико-химических и физических методов исследования вещества. Однако, используя достижения указанных дисциплин, теория химического строения останется химической теорией по своему основному содержанию, характеру основных понятий, представлений и законов. [c.37]

    Решающую роль в установлении правильного строения бензола сыграли физические методы исследования вещества, открытые в основном в нашем веке. Только сочетание физических и химических методов исследования бензола позволило выяснить его структуру. [c.350]

    Материал II главы в основном входит в программу следующих курсов Физическая химия , Стереохимия , Строение материи и Оптические методы исследования органических веществ . Поэтому в этой главе даются лишь краткие сведения, необходимые для понимания последующих глав. В задачу главы не входило рассмотрение методов определения строения органических соединений. [c.59]

    В современной органической химии большое значение имеют различные физические методы исследования. Их можно разделить на две группы. К первой группе относятся методы, позволяющие получать различные сведения о строении и физических свойствах вещества, не производя в нем никаких химических изменений. Из методов этой группы, пожалуй, наибольщее применение получила спектроскопия в широком диапазоне областей спектра — от не слишком жестких рентгеновских лучей [c.730]

    Кроме постоянного совершенствования методов, причем главным образом физических методов, исследования строения вещества перед структурной химией стоит трудно обозримое М ножество проблем, связанных с выяснением конкретных проявлений зависимости реакционной способности от самых различных [c.97]

    Цис- и трамс-изомеры отличаются друг от друга физическими и химическими свойствами. Изучение геометрической изомерии имело большое значение для установления пространственного строения комплексных соединений. На основании того, что для некоторых комплексов МА2В2 и МА4В2 удавалось синтезировать по два изомера, Вернер приписал им квадратное и октаэдрическое строение. Подавляющее большинство комплексных соединений МА2В2 изомеров не имеет. Для них Вернер постулировал тетраэдрическую структзфу. Все предположения были позднее подтверждены современными методами исследования строения вещества. [c.111]

    Очевидно, что эти успехи в совершенствовании физических методов исследования вещества являются составной частью научно-технического прогресса и в той или иной степени влияют на производство и применение полимеров. В решениях XXVI съезда КПСС указано, что на основе использования достижений науки и техники необходимо развивать производство новых полимерных и композиционных материалов и изделий из них с комплексом заданных свойств. Данная книга может способствовать решению этой задачи, поскольку научные работники и технологи — химики, физикохимики и физики, синтезирующие, изучающие или перерабатывающие полимеры, крайне заинтересованы в получении информации о. развитии современных физических методов исследования строения полимеров. [c.5]

    Растворы полимеров играют огромную роль как промежуточное звено при изготовлении из полимеров различных изделий (волокон, пленок и т. п.), а также как клеи, лаки и биологические объекты. Поэтому исследование растворов полимеров — одна из важнейших задач научной работы. Они позволяют уже в настояидее время получить ряд данных о распределении молекул по молекулярным весам, о форме и размерах отдельных молекул полимеров, зависимости формы и размеров молекул от их внутреннего строения и взаимодействия с растворителем. Пока еще в этой области сделано очень мало. Необходимо применить новейшие физические методы изучения строения вещества и таким путем разработать дтетоды установления функций распределения молекул полимеров по различным характеристикам нерегулярности их строения (по типам [c.26]

    АБСОРБЦИОННАЯ спектроскопия (лат. аЬ8огр11о — поглощение) — физические методы исследования, основанные на измерении поглощения излучения определенной длины волны. К А. с. относят спектроскопию в УФ, видимой и ИК частях спектра и др. А. с. применяется для качественного и количественного анализа химических соединений, установления химического строения и степени чистоты веществ, изучения кинетики химических реакций и др. Метод [c.5]

    Значительному расширению и углублению представлений о строении асфальтенов способствовали физические методы исследования. Рядом исследователей [61—65] была установлена слабо выраженная кристалличность нефтяных асфальтенов, дающая размытые дифракционные полосы отражения,, которые соответствуют межплоскостным расстояниям 3,5— 5,5 А. Ен с сотр. [66, 68] на основании детального анализа рентгенограмм разделил когерентную и некогерентную со- ставляющие. Первая соответствует дифракционной лйниш углеграфитовых веществ (002) и обусловлена отражением от конденсированных ароматических слоев. Некогерентная составляющая связана с рассеиванием на насыщенных поли-метиленовых цепочках. Расчет ряда структурных пaJ)aмeтpoв идентифицированных кристаллоподобных систем (табл. 4) позволил сделать авторам следующие вьшоды  [c.16]


Смотреть страницы где упоминается термин Физические методы исследования строения вещества: [c.111]    [c.5]    [c.463]    [c.10]   
Смотреть главы в:

Физическая химия -> Физические методы исследования строения вещества

Физическая химия 1990 -> Физические методы исследования строения вещества




ПОИСК





Смотрите так же термины и статьи:

Вещества строение

Исследование строения веществ

Метод веществам

Методы исследования строения веществ

Методы физические

Физическое исследование



© 2025 chem21.info Реклама на сайте