Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы исследования структуры органических

    Глава 4. Методы исследования структуры органических соединений [c.101]

    ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР) — метод исследования структуры неорганических и органических веществ, в основе которого лежит резонансное поглощение электромагнитных волн веществом в постоянном магнитном поле, обусловленное ядерным магнетизмом. Я- м. р. является одним из новейших методов исследования открыли его в 1946 г. независимо друг от друга две группы американских физиков. [c.297]


    В заключение сошлемся на статьи общего характера. Приведены рекомендации [437] по использованию перегородок в среде агрессивных веществ (неорганические и органические кислоты, основания, соли, окислители, органические растворители) представлены данные [423] о структуре и свойствах фильтровальных тканей, а также о нетканых материалах рассмотрены [438] пористость и проницаемость керамических, металлокерамических, пластмассовых и природных пористых материалов даны указания [439] о выборе фильтровальных тканей в зависимости от назначения и условий фильтрования, а также свойств суспензии и осадка с учетом структуры ткани сделан обзор литературы [440], в частности по проницаемости и задерживающей способности некоторых фильтровальных перегородок дана [441] классификация натуральных и синтетических волокон и рассмотрены принципы выбора фильтровальных тканей помещена [442] классификация разнообразных фильтровальных перегородок, а также приведены их характеристики и методы исследования рассмотрены [443] классификация и выбор фильтровальных тканей. [c.382]

    Развитие новых экспериментальных методов Исследования в органической химии обусловило успехи в изучении структуры белка. В настоящее время различают первичную, вторичную и третичную структуры белковой молекулы. [c.352]

    ЧТО огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые другие). К тому же, при одинаковом составе вещества имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры. Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии — органический синтез. Сегодня структурная химия строится на квантовомеханических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и пр. [c.6]

    Как указывалось выше, теория химического строения А. М. Бутлерова установила, что каждая органическая молекула имеет строго определенную структуру, и указала химические методы, с помош,ью которых можно установить строение молекул. Химические методы исследования структуры были разработаны также для определения строения комплексных соединений — одного из важных классов неорганических веществ (см. стр. 215—216). С помош,ью химических методов было определено строение огромного количества вещ,еств  [c.123]


    Гидролиз белков, по существу, сводится к гидролизу полипептид-ных связей, К этому же сводится и переваривание белков. При пищеварении белковые молекулы гидр<злизуются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и кл(тки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть - на синтез гормонов, ферментов и других биологически важных веществ, а остальные лужат как энергетический материал. Развитие новых экспериментальных методов исследования в органической химии обусловило успехи в изучении структуры белка, В настоящее время раапичают первичную, вторичную и третичную структуры белковой молекулы. [c.420]

    Несмотря на то, что за последние 15—20 лет в практику работы исследовательских лабораторий внедрены более совершенные методы исследования структуры органических соединений — инфракрасная спектроскопия, рентгенография и другие, определение молекулярных рефракций и теперь оказывает существенную помощь в установлении структуры органических соединений простыми средствами. [c.405]

    В спектроскопии ПМР три вида спектральной информации — химические сдвиги, константы спин-спинового взаимодействия и площади сигналов — одинаково важны при исследовании структур органических соединений. Эти же виды информации доступны и в спектроскопии ЯМР С, однако их относительная важность и применимость неравноценны. Параметром, наиболее часто используемым в спектроскопии ЯМР С, является химический сдвиг. Количественной информации о константах спин-спинового взаимодействия в повседневных исследованиях резонанса углерода обычно не получают. Использование интенсивностей сигналов может быть очень полезным, однако следует учитывать, что прямая пропорциональность между площадью сигнала и числом ядер, поглощающих энергию, часто утрачивается. В настоящей главе изложены некоторые общие сведения о спектральных параметрах резонанса углерода и методах их использования при определении структуры и при прочих исследованиях. [c.42]

    Рентгеноструктурными, электронографическими и другими новыми методами исследования структуры углерода установлено, что чистый углерод кристаллизуется с образованием кубической (алмазы) и гексагональной (графит) форм. В узлах кристаллической решетки алмаза каждый атом углерода направляет свои четыре о-связи к четырем соседним атомам. Расстояние между атомами в решетке алмаза такое же, как между атомами углерода в органических соединениях— 1,54 А. Энергия связи между атомами углерода весьма высока, что обусловливает высокую твердость алмаза, малую его летучесть и большую химическую стойкость. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим при нагреве алмаза без доступа воздуха он переходит в термодинамически более устойчивое состояние — в графит. В кристалле графита (рис. 12) атомы углерода в базисных плоскостях расположены в углах шестиугольников, на расстоянии 1,42 А, т. е. на таком л<е расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находяш,ихся на расстоянии 3,345 А. Относительно большое расстояние между базисными плоскостями обусловливает специфические физико-химические и механические свойства графита. Значительное расстояние между базисными плоскостями приводит к тому, что между ними могут внедряться атомы других элементов меньших размеров. [c.50]

    Соответствующее эталонное вещество дает спектр ЯМР с одной или несколькими четкими линиями. При исследовании структур органических соединений в качестве эталонов обычно используют воду, бензол, толуол, хлороформ, трет-бутиловый спирт, трет-бутиламин, тетраметилсилан и другие вещества. Применявшийся ранее метод калибрования состоял в замене исследуемого образца на эталонный образец до и после снятия спектра или в один из этих моментов, но это сопряжено с возможностью появления большой ошибки из-за дрейфа- поля в течение времен , требуемого для калибрования. Другой метод заключается в использовании расщепленной радиочастотной катушки, в которую одновременно помещаются исследуемый и эталонный образцы [3]. Внутренним эталоном служит вещество, оДну-две капли которого непосредственно вводят в раствор, содержащий исследуемый образец. Внешний эталон не смешивают с исследуемым образцом, а запаивают в небольшой капилляр, который помещают внутри трубки, содержащей жидкость или раствор, подлежащие исследованию. При работе с внешним эталоном спектр ЯМР удается наблюдать без наложения на него пиков эталона, если перед тем как поместить трубку с образцом в пробник, ее встряхивают так, что капилляр оказывается в верхней части ампулы. Для проведения точных измерений следует применять специальные устройства, в которых эталонная жидкость находится в кольцевом объеме, охватывающем концентрически ампулы с образцом [20, 49]. [c.265]


    Изучение структуры природных продуктов имело большое значение для развития органической химии, потому что в значительной степени содействовало развитию стереохимических представлений о сложных органических молекулах и стимулировало необычайно быстрый рост применения физических методов исследования структуры (прежде всего спектроскопических методов). Кроме того, при изучении структуры природных продуктов совершенствовались методы органического синтеза. Здесь следует подчеркнуть крупный вклад чехословацких химиков в области исследования природных веществ. [c.178]

    Рентгенография и электронография стали в современной науке новым мощным методом исследования структуры молекул. Иногда можно слышать скептические замечания о том, что рентгеноструктурный анализ только подтверждает заключения о строении молекул, полученные с помощью классических методов органической химии. [c.8]

    Метод ЯМР широко применяется для исследования структуры органических соединений наряду с методами оптической спектроскопии. Поглощение энергии радиочастотного излучения, которое используется в этом методе, связано с магнитными свойствами ядер. [c.142]

    Книга представляет собой перевод третьего, переработанного и дополненного издания известного руководства и справочного пособия по четырем наиболее широко распространенным физическим методам идентификации и исследования структуры органических соединений. Главная цель книги—научить химика ис--пользовать информацию, получаемую из масс-, ИК-, УФ- и ЯМР-спектров, для полной идентификации органических соединений. [c.4]

    Масс-спектрометрия является одним из универсальных методов анализа веществ. Широко используется масс-спектрометрия при исследовании структуры органических молекул. [c.224]

    Ядерный квадрупольный резонанс (ЯКР) является одним из новейших методов исследования структуры и тонких особенностей электронного строения органических, неорганических, элементоорганических и комплексных соединений в твердом состоянии. В книге собраны (в форме таблиц ядерного квадрупольного резонанса) частоты ЯКР около 1200 индивидуальных химических веществ, комплексов и минералов. Приводится фактический материал, накопленный с момента открытия эффекта (1950 г.) до конца 1966 г., представляющий большой интерес для решения ряда вопросов теоретической химии и физики твердого тела. [c.503]

    Лэнгмюр разработал методы исследования некоторых органических молекул (например, жирных кислот, спиртов, аминов, альдегидов, с достаточно длинными цепями, чтобы их растворимость в воде была незначительной), использующие мономолеку-лярные пленки этих веществ на воде. Ему удалось измерить толщину этих плепок и показать, что молекулы упакованы в пленках параллельно друг другу и что они представляют собой цилиндры с поперечным сечением приблизительно в 20 А . Длина цилиндриков оказалась пропорциональной числу метиленовых групп в цепи и составляла примерно 1.2 А на одну группу. В то время (1917 г.) все это производило впечатление поразительных откровений. Оказалось, что молекула — тело с вполне определенными размерами и формой, что можно и должно изображать ее в виде геометрической фигуры, что она совсем не всегда шарообразна и форма ее тесно связана с химической структурой, В создании этих весьма [c.7]

    Масс-спектрометрия предоставляет в распоряжение аналитика эффективный метод обнаружения, идентификации и исследования структуры органических соединений. Масс-спектр несет информацию о массе и относительном содержании молекулярных и осколочных ионов, возникающих при ионизации молекул в ионном источнике масс-спектрометра. Масса молекулярного иона соответствует молярной массе по осколочным ионам можно судить о структурно-специфических реакциях деструкции молекул в условиях измерений и, таким образом, делать далеко идущие выводы о строении исследуемого соединения. На основании природного содержания изотопов в элементах из анализа масс-спектра можно получить сведения о типе и [c.275]

    За последние десятилетия неорганическая химия значительно изменилась качественно и количественно. Экспериментальные методы исследования структуры и квантовохимические расчеты позво- лили выяснить расположение атомов и природу химической связи в очень многих соединениях. Достижения химии координациоипых соедпнений, разработка новых методов неорганического синтеза (особенно реакций в неводных средах), исследование плазмы привели к открытию огромного числа новых веществ. Если раньше считали что неорганическая химия, в отличие от органической, бедна соединениями, то теперь положение коренным образом из менилось. [c.295]

    Для увеличения скорости отнесения частот к отдельным колебаниям было разработано несколько способов. Возможно, наиболее простым из них является ручной подбор зашифрованных перфокарт. Сейчас созданы большие библиотеки стандартных спектров на магнитных пленках для использования их с помощью цифровых вычислительных машин. Используя эти библиотеки и современные методы поиска информации в таких библиотеках, вычислительная машина может легко идентифицировать неизвестные пробы или по крайней мере сократить возможный выбор соединений до небольшого числа, которые затем можно легко исследовать вручную. В сочетании с такими методами исследования структуры, как ядерная магнитная спектроскопия, этот метод является основным для многих промышленных лабораторий, которые занимаются идентификацией неизвестных органических и неорганических материалов. [c.751]

    А. М, Бутлерова установила, что каждая органическая молекула имеет строго определенную структуру, и указала химические методы, с помощью которых можно установить строение молекул. Химические методы исследования структуры были разработаны также для определения строения комплексных соединений одного из важных классов неорганических веществ (см. стр. 224—226). С помощью химических методов было определено строение огромного количества веществ эти данные наряду с результатами изучения свойств соединений и закономерностями их изменения, обнаруженными в связи с открытием и -разработкой периодического закона, явились основой, определившей пути развития химической науки. [c.129]

    Указанные особенности делают масс-спектрометрию универсальным методом, необходимым как для глубокого исследования структуры органических соединений, так и для определения числа компонентов сложных систем. [c.218]

    В 2 будет дана математическая постановка задачи, в 3, 4 рассмотрено влияние на фотоэмиссионный ток г ) -потенциала, специфической адсорбции анионов и катионов, а также адсорбции органических молекул с длинной углеводородной цепью. Проведенное далее сравнение теории с экспериментом иллюстрирует возможности фотоэмиссионного метода исследования структуры двойного слоя. Наконец, в 5 рассмотрен вопрос о роли неоднородности поверхности электрода и найдена зависимость фототока от степени покрытия поверхности адсорбатом. При этом ряд полученных результатов может быть обобщен на более широкий класс электронных переходов. [c.26]

    Масс-спектрометрия (МС) еще сравнительно молодой метод, который только с 60-х годов начал широко применяться как один из основных методов исследования в органической химии [1-4]. Систематически используется этот метод и для исследований в химии неорганических соединений [5]. Применение МС при решении различных физико-химических проблем является обязательным дополнением к другим физическим методам исследования (ИК- и УФ-сиектроскопии, ЭПР, ЯМР и др.), так как позволяет получать оригинальную информацию о структуре и свойствах молекул. [c.169]

    Сборник содер <нт системятически подобранные вопросы и задачи по курсу органической химии. Во 2-м издании (1 е вышло в 1977 г.) существенно переработаны все главы в соответствии с действующей программой и последними достижениями теоретической органической химии. Более серьезное внимание уделено спектральным методам исследования структуры органических соединений. Увеличено число задач, способствующих развитию творческого мышления. [c.2]

    В первом разделе Теоретические основы изложены представления о структуре и типах химической связи в органических, металлоорганических и комплексных соединениях, о молекулярных орбиталях и взаимном влиянии атомов в этих молекулах. На уровне механизмов и типов переходных состояний обсуждается реакционная способность органических соединений. Рассмотрены особенности кинетики и термодинамики органических реакций, типы элёктро- и фотохимических реакций с участием органических молекул. Изложены современные методы исследования структуры органических соединений. [c.3]

    Окисление — один из распространенных методов исследования в органической химии, позволяющих установить структуру изучаемого [c.15]

    В книге изложены Представления о струкхуре и типах химической связи в органических, металлоорганических и комплексных соединениях, о молекулярных орбиталях и взаимном влиянии атомов в этих молекулах, а также современные методы исследования структуры органических соединений. [c.2]

    Классический метод исследования неизвестного органического соединения включает следующие стадии а) очистку и определение чистоты неизвестного соединения б) систематическое исследование с целью определить, не совпадают ли физические и химические свойства данного вещества со св01 ствами одного из многочисленных органических соединений, описанных в химической литературе в) определение структуры и классификацию в случае нового вещества. [c.349]

    Применение ЯМР к изучению структуры органических соединений [3] по существу началось с 1953 г. Л]. За десять лет метод преврат1шся в один из самых мощных мет01Д0 В исследования структуры органических соединений. Современная аппаратура ЯМР-спектроскопии с разрешающей способностью 10 позволяет разделить две линии, различающиеся на 1 гц. Таким образом, спектральная разрешающая способность ЯМР более чем в миллиард раз выше, нежели разрешающая способность инфракрасной спбктроско1пии. [c.358]


Смотреть страницы где упоминается термин Методы исследования структуры органических: [c.5]    [c.96]    [c.4]    [c.10]    [c.7]    [c.275]    [c.179]    [c.4]    [c.306]    [c.355]    [c.355]   
Курс современной органической химии (1999) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Метод структур



© 2025 chem21.info Реклама на сайте