Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактив Гриньяра, механизм образования

    Это замечание справедливо в случае отдельных атомов Мд, изолированных в матрице. Важная реакция алкилгалогенидов с металлическим магнием, в ходе которой образуется реактив Гриньяра, все еще не понятна. Некоторые экспериментальные данные свидетельствуют в пользу свободнорадикального механизма, тогда как другие — нет [1096]. Скорость реакции заметно зависит от поверхности магния и от присутствующих примесей. Энергии активации для различных органических галогенидов коррелируют с потенциалами полуволны восстановления галогенидов Это указывает на образование ВХ как промежуточных частиц. [c.455]


    В учебниках образование соединений Гриньяра представляют в сильно упрощенном виде RX- Mg->R—Мд—X, где X — галоген. Речь идет о реакции на поверхности магния, для которой считают вероятным радикальный механизм [249]. Поэтому оптически активные галогениды превращаются в рацемические соединения Гриньяра [250], хотя удавалось получить и оптически активные магнийорганические соединения, однако с малой оптической чистотой. Соответственно из экзо- или эк5о-норборнилхло-рида образуется реактив Гриньяра одинакового состава (54% эндо, 46% экзо) [251]. Используемый в качестве растворителя эфир играет важную роль он сольватирует реактив Гриньяра и тем самым освобождает поверхность для дальнейшей реакции. [c.371]

    Реакция восстановления была обнаружена еще Гриньяром [45], а в 1929 г. Конэнт и Блэтт [46] нашли, что восстановлению способствует применение пространственно затрудненных кетонов 31). Уитмор и Джордж [47] указали на связь между степенью восстановления диизопропилкетона и наличием атомов водорода у Р-ато-ма углерода в реактиве Гриньяра 32). Особенно поразителен тот факт, что реактив Гриньяра, содержащий неопентильную группу, в которой нет р-атомов водорода, не вызывает восстановления, тогда как реактив Гриньяра с щ эт-бутильной группой, в которой имеется девять р-атомов водорода, обусловливает восстановление с выходом 95%. На основании этих наблюдений Уитмор предположил ), что реакция восстановления нод действием реактивов Гриньяра протекает в результате обратимого образования комплекса 33. в котором затем происходит перенос водорода от реагента к субстрату. Пространственная затрудненность карбонильной группы в 31 подавляет реакцию присоединения и способствует переносу атома водорода, занимающего малый объелг. от Р-атома углерода в реактиве Гриньяра, 1 ак показано в 34Б. с образованием алкоголята магния 35) и олефина 36). Конечный результат после гидролиза состоит в восстановлении кетона в карбинол под действием реактива Гриньяра, который окисляется до олефина. Образование эквивалентных количеств олефина и карбинола было продемонстрировано неоднократно. Кроме того, перенос исключительно только Р-водорода был впоследствии доказан опытами с применением дейтерия [49]. Сходство механизмов реакции восстановления по Меервейну — Понндорфу — Верлею и под действием реактива Гриньяра очевидно. Однако основное различие механизмов состоит в том, что реакция Гриньяра в значительной степени необратима в противоположность равновесному процессу переноса водорода с применением алкоголятов. [c.213]


    В число типичных нуклеофильных реагентов входят аммиак и его производные, НСМ, NaHSOз и реактив Гриньяра. Предложенное Лэпуортсом доказательство электрофильной природы карбонильных соединений з е обсуждалось ранее [164]. Все реакции, о которых здесь идет речь, обратимы и имеют механизм, сходный с механизмом образования циангидрина [164]. [c.146]

    Известно большое число соединений, используемых в качестве катализаторов анионной полимеризации лактамов. Это — щелочные, щелочно-земельные металлы, гидриды, реактив Гриньяра, оксид лития, различные гидроксиды и карбонаты, сульфаты, галогениды, цинкат натрия, щелочные соли различных кислот, т. е. соединения, способные вызвать в реакционной среде образование аниона лактама. Наиболее полно изучен механизм полимеризации в присутствии натрий-лактамов — соединений, представляющих собой соль лактама. [c.9]

    Путем классификации и анализа огромного количества данных и фактов, накопленных более чем за 100 лет, механизмы обычных органических реакций в настоящее время четко установлены. Эти реакции обычно классифицируют как ионные, радикальные или молекулярные, хотя существует и более детальная классификация. Механизмы многих реакций с участием соединений непереходных металлов совершенно понятны, в то время как механизмы органических реакций с участием комплексов переходных металлов до сих пор не ясны. Без сомнения, эти реакции протекают путем образования о-связи металл — углерод, однако химические свойства этих связей остаются непонятными. Поэтому для более ясного понимания реакций, протекающих с использованием комплексов переходных металлов, вначале стоит проанализировать и сравнить их с реакциями реактивов Гриньяра, которые очень хорошо знакомы химикам-органикам. Известно, что первая стадия реакций Гриньяра состоит во взаимодействии металлического магния с ал-килгалогенидами с образованием алкилмагнийгалогени-дов, такшазываемых реактивов Гриньяра. В этой реакции нульвалентный магний окисляется до двухвалентного и происходит расщепление ковалентной связи углерод — галоген, следовательно, эту стадию можно рассматривать как окислительное присоединение алкилга-логенидов к металлическому магнию. Полученный таким способом реактив Гриньяра является источником карб-аниона и реагирует с различными электрофильными реагентами, например карбонильными соединениями или нитрилами. Эту стадию можно формально представить как реакцию внедрения ненасыщенной связи карбонильной группы по связи магний — углерод. В последнем процессе не изменяется степень окисления магния. Таким образом, реакцию Гриньяра можно представить [c.14]


Смотреть страницы где упоминается термин Реактив Гриньяра, механизм образования: [c.369]    [c.49]   
Правила симметрии в химических реакциях (1979) -- [ c.455 ]




ПОИСК





Смотрите так же термины и статьи:

Гриньяр

Гриньяра реактивы

Гриньяров реактив

Механизм образования АТФ



© 2025 chem21.info Реклама на сайте