Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дейтерий применение

    Изотопы находят широкое применение в научных исследованиях, где они используются как меченые атомы для выяснения механизма химических и, в частности, биохимических, процессов. Для этих целей необходимы значительные количества изотопов. Стабильные изотопы получают выделением из природных элементов, а радиоактивные в большинстве случаев с помощью ядерных реакций, которые осуществляются искусственно в результате действия на подходящие элементы нейтронного излучения ядерных реакторов или мощных потоков частиц с высокими энергиями, например дейтронов (ядер дейтерия й), создаваемых ускорителями. Один и тот же изотоп можно получить различными путями. Так, например, для получения радиоактивных изотопов водорода, углерода, фосфора и серы, наиболее широко используемых в практике биологических исследований, осуществляются следующие ядерные реакции  [c.26]


    В последние годы электролитический способ концентрирования тяжелой воды вытесняется более экономичными физическими процессами. В частности, перспективной для промышленного использования является низкотемпературная ректификация жидкого водорода, не содержащего азота, окиси углерода и других примесей. Применение для этой цели электролитического водорода существенно упрощает стадию очистки. Поэтому представляет интерес комбинирование электролитического производства водорода и низкотемпературной ректификации жидкого водорода для получения тяжелой воды. При этом процесс электролиза может быть использован не только для получения водорода, но и для первоначального концентрирования дейтерия в водороде. [c.130]

    Создание сверхмощных магнитных полей, необходимых при исследовании плазмы, получение дейтерия методом низкотемпературной дистилляции жидкого водорода для атомной энергетики, обеспечение работы молекулярных усилителей (мазеров) и генераторов электрод1аг-нитных волн, использование в счетно-вычислительной технике (сверхпроводящие элементы) [1, 5] — вот далеко не полный перечень областей применения жидкого водорода. [c.6]

    Позднее, благодаря тому, что научились разделять изотопы некоторых элементов, стали получать различные соединения, содержащие данный элемент в виде одного изотопа (или хотя бы обогащенные им), и применять их для исследования хода процесса. В особенности широкое применение получил тяжелый водород (дейтерий) благодаря относительно большому различию значений массы легкого и тяжелого изотопов водорода. Для [c.541]

    Применяют водород для получения высоких температур кислородно-водородным пламенем режут и сваривают металлы. Он используется для получения металлов (молибдена, вольфрама и др.) из их оксидов, в химической промышленности — для получения аммиака из азота воздуха н искусственного жидкого топлива из угля в пищевой промышленности—для гидрогенизации жиров (см. 17.14). Изотопы водорода — дейтерий и тритий — нашли важное применение в атомной энергетике (термоядерное горючее). [c.164]

    Статья Кембола посвящена каталитическому обмену углеводородов с дейтерием. Применение дейтерия как изотопного индикатора открыло возможность более глубоко заглянуть во внутренний механизм ряда таких важных реакций, как гидро- и дегидрогенизация, изомеризация и др. Простейшей реакцией такого рода является дейтерообмен, интересный не только сам по себе, но и как реакция, изучение которой много дает для понимания [c.5]


    Ни двуокись кремния, ни окись алюминия сами по себе не являются эффективными в промотировании реакций каталитического крекинга. В действительности они (а также активированный уголь) промотируют термическое разложение углеводородов [249, 250]. Смесь безводных двуокиси кремния и окиси алюминия тоже не проявляет достаточной эффективности. Катализатор с высокой активностью получается только из гидроокисей с последующей частичной дегидратацией (кальцинированием). Остающееся малое количество воды необходимо для нормальной работы катализатора. Исследования, проведенные с применением окиси дейтерия, показали, что эта вода участвует в реакциях обмена водородом между катализатором и молекулами углеводородов, причем указанные реакции начинаются при температурах, значительно более низких, чем температуры крекинга [262, 265]. [c.340]

    Метод меченых атомов нашел дальнейшее развитие, когда научились искусственно получать новые радиоактивные изотопы и тех элементов (натрия, хлора, брома, серы, фосфора и других), природные изотопы которых нерадиоактивны. Это в несколько раз увеличило число элементов, используемых при методе меченых атомов, и вместе с тем во многих случаях позволило значительно повысить чувствительность метода, так как присутствие радиоактивного изотопа может быть обнаружено, даже если концентрация его очень мала, и часто довольно доступными способами. Преимущества эти настолько существенны, что наряду с дейтерием нашел применение и искусственно получаемый радиоактивный изотоп водорода—тритий. [c.542]

    Тяжелая вода с изотопом дейтерием В (масса 2) находит все возрастающее применение не только в качестве охлаждающего [c.248]

    Жидкий водород используется как эффективное ракетное топливо. Изотопы водорода (тритий и дейтерий) находят применение в атомной энергетике для осуществления ядерных реакций. [c.413]

    Работа с веществами, содержащими меченые атомы. Громадное развитие физики и химии стабильных и радиоактивных изотопов многих элементов создало необозримые возможности для изучения многих научных вопросов также в области органической химии, биохимии, в медицине и др. Пользуясь точными методами обнаружения и определения изотопных веществ, можно решать такие вопросы, которые были недоступны для решения обычными химическими методами. Для проведения таких работ необходимо во многих случаях иметь органические вещества, в молекулы которых введены простые или радиоактивные (рад.) изотопы дейтерий (О), тритий (рад.), тяжелый кислород Ю, сера или (рад.), С (рад.), (рад.) и др. Так как соединения с мечеными атомами очень дороги, а в ряде случаев весьма опасны для здоровья, от химика требуется большая тщательность в работе с очень малыми количествами вещества, часто с применением особых мер предосторожности. Это, однако, пе останавливает исследователей, и подобные работы очень энергично развиваются. [c.398]

    Широкое применение в атомной энергетике нашли изотопы водорода — дейтерий и тритий, которые являются ядерным горючим. [c.110]

    Тяжелая вода находит применение в ядерных реакторах в качестве замедлителя нейтронов и теплоносителя, используется при получении Вг, в качестве растворителя в ЯМР-спектроско-пии. Она является перспективным компонентом топлива термоядерных реакторов, так как энергия 0,001 кг дейтерия, расходуемого в процессе термоядерного синтеза, эквивалентна энергии, полученной при сжигании 10 тонн угля. [c.20]

    Присоединение водорода к алкенам изучалось масс-спектрографическим методом [78] на системах дейтерий — этилен, дейтерий — пропилен, дейтерий — 1-бутен, дейтерий — 2-бутен и дейтерий — изобутилен. Изучали зависимость распределения изотопных молекул от продолжительности процесса, соотношения реагирующих компонентов, температуры (вплоть до 200° С) и давления (до 105 ат) с применением различных катализаторов и носителей. Полученные результаты исключают возможность непосредственно молекулярного присоединения газообразного алкена к адсорбированной молекуле водорода или газообразного водорода к адсорбированной молекуле алкена. Механизм реакции, очевидно, включает стадии с участием многочисленных молекулярных форм на поверхности катализатора, ведущие в конечном счете к образованию алкена. Важным промежуточным продуктом этой реакции, очевидно, является алкильный радикал. [c.128]

    Практически единственным способом, с помощью которого можно получить прямые доказательства наличия или отсутствия обмена между различными соединениями одного элемента, является применение изотопов . Так, смешивая СНдСООН и ОгО, можно получить прямое подтверждение обратимого перехода водорода между уксусной кислотой и водой в результате того, что после разделения смеси на исходные компоненты дейтерий оказывается равномерно распределенным между кислотой и водой, т. е. происходит процесс [c.130]


    Действующих поверхностей, закон 2/688, 689 Дейтерий 2/23 атомное ядро, см. Дейтрон(ы) оксид, см. Тяжёлая вода определение 5/335, 336 получение 2/25, 392 5/33 применение 2/25, 26 4/785 5/802 свойства 1/403, 775 2/24, 25, 190, [c.588]

    Во многих случаях для облегчения анализа спектров может быть применен чрезвычайно полезный метод, основанный на зависимости частот колебаний от масс атомов. Замещение атомов их изотопами, в частности замещение атомов водорода в углеводородах атомами дейтерия, заметно изменяет инфракрасные спектры и спектры комбинационного рассеяния н позволяет получить ряд важных сведений. Поскольку силовые постояниые практически не зависят от изотопического состава, исследование спектров полностью дейтерированных углеводородов позволяет получить допо.инительиое число частот для вычисления силовых постоянных и поэтому применяется в ряде с-дучаев. Кроме того, частичное дейтерирование симметричных молекул уменьшает их симметрию, изменяет правила отбора и приводит к расщ(шлению вырожденных колебаний на невырожденные (т. е. к снятию вырождения с некоторых колебаний). Подобные изменения часто чрезвычайно важны для определения и отнесения основных частот исходных (недейтерированных) углеводородов. [c.301]

    Для разделения изотопов водорода кроме микропористых можно применять сплошные металлические [100, 101] (палладий и его сплавы) или полимерные (силиконовый каучук, полиэти-лентерефталат, тетрафторэтилен, ацетат целлюлозы и т. д.) мембраны [99, 102, 103]. При этом проницаемость протия через подобные мембраны выше, чем дейтерия и трития. По сравнению с микропористыми и палладиевыми мембранами селективность полимерных непористых мембран ниже, но, учитывая, что они намного дешевле и не требуют применения высоких температур (а значит более выгодны с точки зрения затрат энергии), можно ожидать их широкого применения для разделения изотопов водорода. [c.315]

    Эт закономерности, как показано выше, могут нарушаться, например, из-за торможения продуктами реакции, недостатка водорода, особенностей адсорбции вещества. Поэтому особенно интересно применение для гидрирования полициклических ароматических углеводородов гомогенных комплексных катализаторов, при использовании которых не имеют место осложняющие явления, связанные с адсорбцией и десорбцией на катализаторе. Эти катализаторы появились недавно, а применение их для гидрирования полициклических углеводородов описано пока только в одной работе Катализатор был приготовлен на основе родия и N-фeнилaнтpaнилoвoй кислоты. На примере антрацена опытами с дейтерированием и определением места дейтерия в прореагировавшей молекуле было показано, что в данном случае не происходит промежуточного образования 9,10-дигидро- [c.157]

    Метод меченых атомов нашел применение вначале для изучения подвижности или реакционной способности различных атомов в молекуле данного соединения или в молекулах различных соединений (в частности, в реакциях изотопного обмена). Однако систематические исследования реакций изотопного обмена и других реакций с использованием меченых атомов начались с открытием дейтерия и получением искусственно-радиоактивных и стабильных изотопов других элемептоБ. [c.21]

    С другой стороны, изучение реакций атомарного дейтери г с газообразными алканами дало более точные данные для вычисления энергий активации элементарных радикальных реакций замещения [59, 60]. В этих работах обмен водорода на дейтерий с образованием дейтеро-замещенных алканов был применен как метод изучения механизма элементарных реакций, при которых возникают дейтеро-соединения, позволяющие следить за отдельной реакцией в сложном процессе. [c.31]

    При этом дейтеризация продуктов связана с накоплением дейтерия в этилене в результате обмена на атомы дейтерия. В случае молекулярного механизма крекинга подобный обмен происходить не может. Для полностью за торможение г N0 и незаторможенного распада пропана при одинаковой глубине превращения наблюдался в этилене одинако1Вый обмен. Поскольку обмен связан с глубиной превращения и не зависит от времени достижения ее, то эти опыты нельзя объяснить как результат образования дейтерированных продуктов по реакциям обмена, не зависимым от процесса крекинга [65]. Важно было показать также, что обмен при различных глубинах превращения пропорционален этим глубинам. Это показано в других исследованиях, описанных ниже. Этот метод был применен также для доказательства процессов миграции свободной валентности в радикалах, т. е. изомеризации некоторых свободных радикалов [90, 91, 921, и при изучении дейтеризации метана (образующегося в системах алкен-1)2-0 при различных концентрациях атомов дейтерия и, в частности, при очень малых концентрациях), контролируемой масспектрометрическим методом анализа [931. [c.44]

    Разработаны и другие процессы получения нейтронов при бомбардировке дейтерием. Используются также ядерные реакции, возбуждаемые у-излучением. С пуском ядерных реакторов появился мощный источник нейтронов, намного превосходящий по интенсивности все известные до сих пор методы их получения. Современные ядерные реакторы имеют поток нейтронов порядка Ю нейтрон/(см -с). В реакторах с плотностью нейтронного потока 10 —10 нейтрон/(см -с) можно полностью перевести в другие элементы загруженный материал в течение нескольких месяцев. Применение этого метода для накопления весомых количеств трансурановых элементов можно показать на примере кюрия. При облученииде Сгп потоками нейтронов мощностью 10 нейтрон/(см -с) можно полу- [c.417]

    I] провел предварительный опыт, в которо.м для восстановления хинона в системе ацетат меди (I) — химолин был применен дейтерий. Скорость реакции была на ниже, чем с водородом. [c.184]

    Вследствие того что изотопы одного и того же элемента имеют одинаковую электронную структуру, которая в основном определяет химическое поведение атома, изотопный эффект зависит исключительно от массы изотопов, взятых для сравнения. Это различие в массе влияет на формы движения молекулы или атома (поступательное движение, вращение, колебания). Имеются два метода исследования изотопного эффекта. В одном из них проводится измерение изотопного состава исходных веществ и продуктов реакции, пока она еще не закончилась. Вследствие различия в скорости реакции веществ с легким и тяжелым изотопами (более легкий изотоп реагирует быстрее, что будет обосновано далее) обычно исходные вещества обогащаются тяжелым изотопом, а продукты реакции — легким. В другом методе проводится непосредственно измерение скорости реакции как с веществами, содержащими легкий изотоп, так и с веществами, содержащими тяжелый изотоп. Последний метод применяется, правда, только в случае, если изотопы сильно различаются по массе, и поэтому практически ограничен реакциями с участием изотопов водорода. Основной областью применения изотопного эффекта как раз и является исследование реакций веществ, содержащих атомы водорода. Отношение массы дейтерия к протию (одно из названий легкого водорода) равно 2, трития к протию — 3. Для более тяжелых изотопов это [c.197]

    Структурный фазовый переход и тепловое расширение в кристаллах дигидрофосфата калия КН2РО4 [15]. Кристаллы дигидрофосфата калия КН2РО4 (КВР) принадлежат большому классу одноосных сегнетоэлектриков, нашедших широкое применение в радиоэлектронной промышленности. Возможность широко варьировать состав этих кристаллов путем изоморфного замещения атомов калия атомами рубидия, цезия и других элементов, а также замещения атомов водорода атомами дейтерия, позволяет существенно изменять их физические характеристики, такие, как температура Кюри Гк, величина спонтанной поляризации и т. п. [c.158]

    Для проведения строго направленных фотохимических реакций используют монохроматическое излучение (лазеры). Лазерное излучение обладает уникальными свойствами, которых нет у обычных источников света. Наиболее важным свойством лазерного излучения с точки зрения применения его для фотохимического инициирования химических процессов является излучение мощных потоков световой энергии в узких спектральных интервалах. Используя излучение определенной длины волны, погло-щаемое реагентом, но не поглощаемое примесями, можно осуществлять только один вполне определенный процесс. Так, при лазерном облучении смеси СН3ОН, СОзОО (О — дейтерий) и Вг2 происходит бромирование только СН3ОН вследствие избирательного возбуждения молекул. Если данное вещество способно, например, к распаду и к изомеризации, то можно, используя лазерное излучение, осуществить направленно только один процесс. [c.120]

    Интересное применение вытеснительного метода описывают Глюкауф и Китт (1957). Онп проводили препаративное разделение смеси дейтерия и водорода на палладирован-ном асбесте в колонке длиной 44 см и диаметром 8 мм. Колонка, заполненная вначале гелием, на 40% своего объема насыщалась затем смесью, содержащей около 50% дейтерия. В смесп имелись молекулы Нг, Вг и НВ. После этого в колонку вводили чистый водород со скоростью 2,5 л/час. Поскольку изотермы сорбции водорода и дейтерия даже при очень высоких парциальных давлениях не являются вогнутыми, можно отказаться от применения газа-носителя. На рис. 9 представлена хроматограмма описанного опыта, которая показывает, что в процессе одного разделения может быть получено в чистом виде 0,2 л дейтерия. [c.436]

    Применение кислот, меченных изотопами водорода (обычно используют тяжелую воду, дейтерометанол или дейтероуксусную кислоту), приводит к замене лития на дейтерий или тритий. Это превосходный метод получения соединений, меченных изотопами водорода в определенном положении. Степень обогащения обычно высокая (75-95 %). Таким же путем можно установить положение лития в молекуле  [c.250]

    Исследования строения молекул гемопюбина и хлорофилла, синтез гемниа Разработка и применение в химии методов высокого давления Открытия и исследования в области химин поверхностных явлений Открытие тяжелого водорода (дейтерия) [c.775]

    Такой растворитель, как этиловый спирт, по-видимому, может играть роль в переходе атома водорода. Например, если использо-. вать дейтерировапный этиловый спирт, то атом дейтерия может войти в состав олефина. Ниже приведен пример, показывающий, насколько широка область применения этой перегруппировки [22] [c.160]

    Надо сразу сказать, что стандартных путей к решению здесь нет. Точнее говоря, путь есть и совершенно надежный и общий однако его применение сопряжено с весьма значительными затратами труда и времени. Он состоит в синтезе серии дейтерированыых аналогов изучаемого соединения и сопоставлении спектров аналогов и родоначального вещества. Идея этого подхода основана на том, что дейтерий в спектрах ПМР не виден (его химический сдвиг лежит далеко за пределами шкалы химических сдвигов протонов). В результате в спектре дейтери-рованного аналога исчезает сигнал одного из протонов, а именно того, который был заменен на дейтерий. И по этому признаку можно с полной надежностью произвести отнесение такого сигнала. Имея серию дейтерирован-ных производных, можно полностью расшифровать весь, сколь угодно сложный, спектр ПМР. [c.81]

    Если мы измерили все ЯЭО в такой системе и зпаем некоторые межъядерные расстояния, это уравнение позволяет нам вычис шть неизвестные межъядерные расстояния. Например, положение геминальных протонов у 5/ -гибридизованного углерода почти не меняется при переходе от молекулы к молекуле. Если эти протоны составляют АМ-часть системы АМХ, то по измеренным ЯЭО мы можем определить положение ядра X. Применение формулы возможно только при условии жесткой связи между тремя ядрами (одинаковые т . для двух межъядерных векторов) и в отсутствие посторонних источников кросс-релаксации (т.е. в отсутствие поблизости других ядер со спином 1/2). Последнее требование надежно выполняется только в случае очень небольших молекул, однако убедиться в отсутствии других источников кросс-релак-сации можно и с помощью изотопного замещения водорода иа дейтерий, Кроме того, даже присутствующие в молекуле посторонние источники кросс-релаксации могут не оказывать существенного влияния на эксперимент, если они достатотао удалены от интересующих нас ядер. Проверить это условие можно с помощью ЯЭО облучение посторонних ядер не должно давать заметного ЯЭО на исследуемых ядрах. [c.162]

    Применение дейтериевой метки позволило доказать, что элиминирование является син-отщеплением. Дейтерий был введен стереоспеци-фично при восстановлении оксидов цис- и транс-аилъбеаа с помощью Ь1АШ4- Продуктом последующего пиролиза сложного, эфира является тракс-стидьбен из-за эффектов заслонения, возникающих в переходном состоянии. При сы -элиминировании дейтерий сохраняется в олефине, полученном из оксида транс-стильбена, н отсутствует в олефине из ок-сйда 1 с-стильбена [84]  [c.217]


Смотреть страницы где упоминается термин Дейтерий применение: [c.333]    [c.113]    [c.100]    [c.125]    [c.100]    [c.98]    [c.294]    [c.317]    [c.392]    [c.145]    [c.147]    [c.186]    [c.212]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дейтерий



© 2025 chem21.info Реклама на сайте