Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогениды восстановление

    Некоторые металлы весьма затруднительно, а иногда почти невозможно получать из их окислов, так как эти окислы очень устойчивы по отношению к водороду и к металлам-восстановителям. Применять в этих условиях для восстановления углерод тоже нельзя, так как получаемые металлы дают карбиды. Такие металлы получают или электролизом, илн. же из их галогенидов восстановлением щелочными металлами. Из галогенидов наиболее часто для этой цели применяются хлориды, фториды и двойные фториды. [c.45]


    За последнее время интересы исследователей сосредоточивались на изучении поведения комплексов галогенидов восстановленного титана, в частности трихлорида титана. [c.145]

    Если окисление галогенами идет в кислой среде, то продуктами восстановления галогенов являются соответствующие галогеноводородные кислоты Н г, НС1, НВг и Н1. При окислении в щелочной среде получаются соли этих кислот, т. е. галогениды металлов. Сера при повышенной температуре ведет себя как окислитель по отношению к водоролу и к металлам. Продуктами восстановления ее являются сероводород и сульфиды металлов. [c.147]

Рис. 10-4. Фотографический процесс. Экспонирование (воздействие света) делает галогенид серебра, содержащийся в фотографической эмульсии на поверхности пленки, более чувствительным к восстановлению серебра при последующей обработке проявителем , в состав которого входит вос- Рис. 10-4. <a href="/info/17325">Фотографический процесс</a>. Экспонирование (<a href="/info/373091">воздействие света</a>) делает <a href="/info/2105">галогенид серебра</a>, содержащийся в <a href="/info/19451">фотографической эмульсии</a> на <a href="/info/165063">поверхности пленки</a>, <a href="/info/1863721">более чувствительным</a> к <a href="/info/14615">восстановлению серебра</a> при <a href="/info/1154947">последующей обработке</a> проявителем , в состав которого входит вос-
    Чистый кристаллический бор получают восстановлением галогенидов водородом  [c.327]

    Особым случаем восстановления металлов из их соединений можно считать термическую диссоциацию галогенидов металлов или реакцию внутримолекулярного окисления-восстановления, протекающую по уравнению  [c.13]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    В реакциях замещения происходит нуклеофильный обмен содержащихся в комплексах галогенид-ионов на гидрид-ионы. Эта реакция может сопровождаться восстановлением центрального иона. В качестве источника гидрид-ионов могут выступать [c.465]

    Галогенид-ионы образуются при восстановлении галогенов. Возможность их присутствия в виде ионов, например в водном растворе, зависит от величины парциального отрицательного заряда. Присоединение электрона к атому галогена (с образованием конфигурации s p ) сопровождается выделением энер-хии, и поэтому галогенид-ионы весьма устойчивы. [c.498]

    Восстановление галогенидов и сульфидов водородом или металлами [c.585]

    Следующий сухой метод получения металлов — восстановление в процессе термического разложения некоторых их соединений, главным образом галогенидов и наиболее часто иодидов почему )  [c.585]

    Большое влияние оказывают условия, в которых протекает окислительно-восстановительная реакция, на ее направление и характер получаемых продуктов. Так, галогены после выполнения ими окислительной функции образуют в растворе галогеноводородные кислоты, а в щелочной среде - галогениды металлов. Аналогично ведут себя хлорноватая и бромноватая кислоты и их соли — хлораты и броматы, образующие те же продукты восстановления. Йодноватая же кислота восстанавливается до иода, а с сильными восстановителями образует Н1 или иодиды. [c.123]

    При использовании же в качестве окислителя галогена почти всегда преследуется цель перевода в галогенид основного элемента. Полученный галогенид подвергается восстановлению водородом или термораспаду. В результате протекания соответствующих химических реакций происходит значительное снижение содержания примесей в очищаемом веществе. Для увеличения степени чистоты получаемого материала промежуточное соединение — галогенид и выделяемый из него элемент подвергают дополнительной очистке. [c.12]

    Можно ли применять металлический магний или кальций для получения металлического иттрия путем восстановления его галогенида при 298 К  [c.113]

    В подобных кулонометрах с успехом может быть использован анодный процесс окисления, например иодида до иода и титрование последнего тиосульфатом, ванадила до ванадата в сернокислой средс и титрование солью Мора, серебряного анода до Ag+ и титрование галогенидом, или же катодный процесс восстановления, например соединения трех-ва лентного железа до двухвалентного и титрование перманганатом, воды до ОН -ионов и титрование их какой-либо кислотой и т. д. [c.212]

    Чем выше степень дисперсности бромида серебра, т. е. чем мельче частицы эмульсии, тем выше его химическая активность и светочувствительность слоя. Под влиянием света происходит разложение следов галогенида серебра на освещенных местах. При этом галоген абсорбируется желатиной, а освобождающееся металлическое серебро выделяется в виде мельчайших частиц. Если обработать слой, который еще не обнаруживает никакого видимого для глаза изменения (скрытое изображение фотографического предмета) восстановителем (проявителем), то произойдет восстановление остальной части галогенида серебра  [c.182]

    Из таких способов чаще всего применяют отделение N4 + диметилглиоксимом и эфиром осаждение Ag в виде галогенида восстановление благородных металлов отгонку ртути, кадмия и цинка отделение ионов и Сс1 + с помощью иопообменников. [c.138]

    Здесь следует рассмотреть два основных варианта реакции Фри-деля-Крафтса. Первый вариант — прямое алкилирование бензола (или гомологов) с применением олефинов или неорганических сложных эфиров (алкилгалоидов или сульфатов) и небольших количеств катализатора. Другой вариант заключается в ацилировании с образованием арилал-килкетонов (как промежуточных соединений) и восстановление их в ароматические углеводороды. Ацилирование производится хлорангидридами или ангидридами с добавлением стехиометрических количеств катализатора — галогенида металла, обычно безводного хлористого алюминия  [c.480]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]


    Гидридные лиганды образуются восстановлением галогенида под действием соответствующих восстановительных агентов, например Р1С12[Р(С2Нв)з12, или путем прямой реакции с водородом  [c.23]

    Для восстановления многих металлов из их галогенидов используют дисперсии натрия в эфире, толуоле и др. Получаемые при этом порошки кадмия, кобальта, марганца, алюминия и других металлов, обладают высокой химической активиостью и пирофорны. [c.30]

    Для получения простых веществ часто используют галогениды. На рисунке 102 показана температурная зависимость энергии Гиббса образования некоторых хлоридов от температуры. Нетрудно догадаться, что для восстановления титана из его тетрахлорида можно использовать магний (магнийтермия)  [c.194]

    МСС с металлами нещелочной группы. МСС с железом получено восстановлением МСС графит-ГеС1з боргидридом натрия и лития алюмогидридом. Восстановление МСС с хлоридами металлов до металла получено с использованием в качестве восстановителей ароматических анион-радикалов [6-84]. Возможно двухступенчатое электрохимическое восстановление МСС с галогенидами металлов. МСС, полученные восстановле- [c.295]

    Аммиачные растворы серебра нельзя долго хранить, так как при хранении в осадок может выпасть взрывчатый нитрид AgaN. Раствор, находящийся над отходами серебра, лучше всего смешать с соляной кислотой до прекращения образования осадка Ag l. Для получения серебра осадок отфильтровывают, промывают, добавляют НС1 (1 1) при помешивании и восстанавливают палочками цинка в фарфоровой чашке. После восстановления всего галогенида серебра серебряный [c.574]

    Реакция, обратная процессу восстановления, указанному в последней строке табл. 21,4, представляет собой окисление галогенид-иона в свободный галоген. Поскольку отрицательный потенциал этой реакции в случае брома и иода не слишком велик, окисление бромид- или иодид-ионов химическими методами не представляет особого труда. Например, в промышленности бром получают путем окисления водного раствора бромид-иона газообразным хлором, как описано в разд. 17.2. Аналогично иод получают путем хлорирования водного раствора, выходяшего вместе с нефтью из нефтяных скважин  [c.291]

    Свободный бор получают восстановлением борного ангидрида В2О3 магнием. При этом бор выделяется в виде аморфного порошка, загрязненного примесями. Чистый кристаллический бор получают термическим разложением или восстановлением его галогенидов, а также разложением водородных соединений бора. Он имеет черный цвет и среди простых веществ по твердости уступает только алмазу. [c.396]

    Электрохимические методы открывают широкие возможности для синтеза различных органических соединений. Так, на катоде можно осуществить восстановление двойных и тройных связей, причем соединения с двойными связями часто вступают в реакцию электрохимической димеризации с образованием гидродимеров. Описаны реакции электрохимической гидроциклизации, катодного восстановления нитросоедннений, нитрилов и других веществ с различными функциональными группами, катодное отщепление галогенидов от галогенорганических соединений. На аноде могут быть окислены разнообразные органические веществ , осуществлены реакции замещения и присоединения, например электрохимическое фторирование  [c.273]

    Закончить уравнение реакции восстановления галогенида ЕиС1з водородом  [c.253]

    В подкисленный раствор смеси солей КС1, КВг и KI прибавлен в достаточном количестве раствор КМпО. Написать редоксо-цепи для каждого галогенид-иона, обозначить электродные по тенциалы, отметить знаки полюсов, направление перемещения электронов вычислить э.д.с. цепей. Все ли галогенид-ионы могут быть окислены до свободного состояния действием перманганат-иона Написать соответствующие ионные уравнения реакций окисления — восстановления. Какая из трех рассматриваемых реакций будет протекать наиболее и какая наименее интенсивно  [c.159]


Смотреть страницы где упоминается термин Галогениды восстановление: [c.54]    [c.422]    [c.370]    [c.448]    [c.508]    [c.603]    [c.398]    [c.216]    [c.217]    [c.91]    [c.251]    [c.583]    [c.45]    [c.144]    [c.492]    [c.571]    [c.182]    [c.152]    [c.152]   
Химия и периодическая таблица (1982) -- [ c.144 ]




ПОИСК







© 2024 chem21.info Реклама на сайте