Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ромбическая кристаллографическая система

    Измерены также величины диамагнитной восприимчивости и главных показателей преломления [21]. Показано, что оси деформации, главные направления диамагнитной восприимчивости и направления главных показателей преломления в кристаллах ромбической системы совпадают с кристаллографическими осями а, Ь и с (табл. 2. 2). [c.39]

    Поэтому предпочтительно не обсуждать этот вопрос, а оговорить способ проведения кристаллографических координатных осей для решеток каждой сингонии по отдельности. Соответствующие требования сформулированы в табл. 2 в колонке Выбор осей . Так, например, в пространственных группах, относящихся к ромбической сингонии, всегда содержащих взаимно перпендикулярные поворотные, винтовые или инверсионные оси второго порядка, координатные оси направляются параллельно этим элементам симметрии. Следовательно, в группах ромбической сингонии кристаллографическая координатная система всегда ортогональна. То же относится, естественно, и к группам с более высокой симметрией — средней и высшей категории. Наоборот, в группах моноклинной сингонии ось симметрии 2, 2ь или 2 (т. е. т) фиксирует направление только одной из кристаллографических осей. Две другие располагаются в узловой сетке решетки, перпендикулярной оси симметрии (параллельной плоскости симметрии). Выбор узловых рядов этой сетки, принимаемых за координатные оси, вообще говоря, неоднозначен. Требуется лишь, чтобы наименьшие трансляции вдоль этих рядов образовали пустой параллелограмм (параллелограмм, в площади которого нет дополнительных узлов). [c.29]


    Поэтому предпочтительно не обсуждать этот вопрос, а оговорить способ проведения кристаллографических координатных осей для решеток каждой сингонии по отдельности. Соответствующие требования сформулированы в табл. 2 в колонке Выбор осей . Так, например, в пространственных группах, относящихся к ромбической сингонии, всегда содержащих взаимно перпендикулярные поворотные, винтовые или инверсионные оси второго порядка, координатные оси направляются парал-тельно этим элементам симметрии. Следовательно, в группах ромбической сингонии кристаллографическая координатная система всегда ортогональна. То же относится, естественно, и к группам с более высокой симметрии— средней и высшей категории. Наоборот, в группах моноклинной сингонии ось симметрии 2, 2] или [c.30]

    Для описания физических свойств кристаллов пользуются правой прямоугольной системой координат. Для кубической, тетрагональной и ромбической сингоний оси этой кристаллофизической системы координат Х , Х2, совпадают с кристаллографическими X, У, Z, для остальных сингоний кристаллофизические оси ориентированы относительно кристаллографических по правилам стандартной установки (см. табл. 26 и 27). [c.188]

    Системы кристаллов различаются характером взаимного расположения кристаллографических осей и их длиной. В трех первых типах систем оси а, Ь я с взаимно перпендикулярны (а=Р=7=90°). В кубической системе оси имеют одинаковую длину (а=6=с), тетрагонально й — одинаковы лишь две оси (а=Ьфс), в орто-ромбической — все три оси разной длины (афЬфс). В гексагональной системе две оси одинаковой длины располагаются в одной плоскости и образуют угол 120°, ось с им перпендикулярна (а=Ьфс а=Р=90°, 7= 120 )- В моноклинной системе все три оси разной длины (афЬфс), две из них образуют между собой угол, отличный от 90°, а третья ось расположена под прямым углом к этим двум осям ( =7=90°, Р=90°). В триклинной системе все три оси имеют разную длину (афЬфс) и расположены под разными углами (аф фу). Ромбоэдрическая система характеризуется одинаковой длиной осей (а=Ь=с) и одинаковыми углами между осями, отличными от 90° (а=Р= 79 90 ). [c.133]

    Кристаллы были распределены по системам (сингониям) еще до того, как была исследована их структура. В основу такого деления положена форма примитивного четырехгранника, образованного четырьмя не параллельными друг другу гранями кристалла (рис. 2.3). Выбор основного четырехгранника заключается в выделении трех наиболее развитых граней, не пересекающихся по параллельным ребрам. Пересечение этих граней выделяет три прямые X, Y, Z, называемые кристаллографическими осями. Каждая из них имеет положительный (-f) и отрицательный (—) концы. Четвертая грань, замыкающая четырехгранник, — единичная грань. Она пересекает ось X в точке Я, отсекая отрезок ОЯ = а, ось У в точке К (ОК = Ь) и ось Z в точке L OL = ). Отнощение отрезков а Ь с, отсекаемых единичной гранью на кристаллографических осях, называется отношением осей. Основные четырехгранники кристаллов триклинной сингонии отличаются углами а, Р, у и отноще-нием осей а Ь с. Все ромбические кристаллы имеют а=р=у=90° и в зависимости от вещества различную величину отнощения осей. У кубических кристаллов независимо от вещества одинаковая форма основного четырехгранника (а = Ь = с, а = = у — 90°). [c.36]


    Зависимость между числом фаз, находящихся в равновесии, и числом степеней свободы можно пояснить на примере диаграммы состояния серы, которая имеет точку кристаллографического превращения. На рис. 8.2 отмечены области существования ромбической, моноклинной, жидкой и парообразной серы. Диаграмма показывает, что могут быть следующие равновесные системы  [c.132]

    В высшей и средней категориях и в ромбической сингонии ориентировка характеристической поверхности полностью задается кристаллографической системой координат. Значительно сложнее обстоит дело с моноклинной и триклинной сингопиями, где главные оси характеристической поверхности могут и не совпадать с кристаллографической системой координат. [c.213]

    Аналогично этому можно вывести коэффициент объемного расширения прямоугольного параллелепипеда, неодинаково расширяющегося по трем осям, как это имеет место, например, в кристалле ромбической системы, ребра которого направлены по трем главным кристаллографическим осям. Если ребра соответственно равны х, у и 2, то объем [c.20]

    Целлюлоза долгое время рассматривалась как вещество аморфное, и только рентгенографические работы ряда исследователей вскрыли ее кристаллическую структуру. Эти исследования показали, что кристаллики целлюлозы принадлежат к ромбической системе с соотношением кристаллографических осей [c.260]

    В наиболее общем случае монохроматический свет, падающий на пластинку поглощающего кристалла, разлагается на два эллиптически поляризованных луча. Как отношения больших осей к малым, так и направления вращения одинаковы для обоих эллипсов, но их большие оси взаимно перпендикулярны. Однако свет, колеблющийся вдоль направления колебания кристаллической пластинки, проходит плоскополяризованным и поэтому может быть погашен скрещенным анализатором. Сечение кристалла обладает показателями преломления щ и Па и показателями поглощения и К.2 соответственно для двух его направлений погасания. Различно ориентированные сечения одного и того же кристалла обладают различными значениями 1, 2- 1 и 2. Эти значения меняются с изменением длины волны, причем особенно чувствительны показатели преломления. Можно построить поверхность показателей поглощения так же, как мы строим поверхность показателей преломления, чтобы дать наглядное представление о природе двойного лучепреломления в кристалле. Для идеально прозрачного кристалла эта поверхность сведется к геометрической точке, в то время как для оптически изотропного (поглощающего) кристалла она будет сферой радиуса 1. Поверхность показателя поглощения для обыкновенного луча в одноосном кристалле образует сферу радиусом а для необыкновенного луча — овалоид, меняющийся от 7. вдо ь оптической оси и до перпендикулярно к ней. Обычно у положительных кристаллов а у отрицательных кристаллов Это эквивалентно утверждению, что большее светопреломление сопровождается обычно и большим поглощением. Для двуосных ромбических веществ поверхность поглощения подобна поверхности показателей преломления, т. е. имеется два направления, для которых показатели поглощения одинаковы. За случайными исключениями, эти направления не совпадают с оптическими осями и не имеют определенных обозначений. Ваягно, однако, отметить то обстоятельство, что главные оси поверхности поглощения ромбического кристалла совпадают с осями X, Г, 2 поверхности показателей преломления, которые, в свою очередь, совпадают с кристаллографическими осями. В моноклинных кристаллах только одна из главных осей поглощения, совпадающая с кристаллографической осью Ь, совпадает также с осью поверхности показателя преломления. Асимметрия кристаллов триклинной системы сказывается также и на поверхности поглощения главные оси поглощения, за случайными исключениями, не совпадают с главными осями колебаний. [c.303]

    В зависимости от внешней формы и строения кристаллы делятся иа кристаллографические системы, или сингонии (син — сходный, гония — угол) Всего существует семь кристаллографических систем которые сгруппированы по набору элементов симметрии в три категории выс-шую, среднюю и низшзто К высшей категории относится только кубическая система Кристаллы, входящие в нее, в наборе элементов симметрии имеют несколько осей симметрии высшего порядка (п>2) К средней категории относятся уже три системы — тригональная (ромбоэдрическая), тетрагональная и гексагональная Кристаллы этих систем имеют лишь по одной оси симметрии высшего порядка К низшей категории относятся оставшиеся три системы— триклинная. моноклинная и ромбическая Кристаллы этих систем не имеют ни одной оси симметрии высшего порядка [c.236]

    Для пояснения представим кристалл в виде пространственной решетки (рис, 1, а), в узлах которой лежат его структурные элементы (молекулы, атомы, ионы). Изображенный на рисунке кристалл принадлежит по кристаллографической классификации к ромбической системе. Оси кристаллов такого типа пересекаются под углами а. =- Р = = 7 — 90° длины их АВ, СД и ЕР относятся как а в с, причем а =/= в =/= с. На рис. 1, б представлена грань, лежащая в основании кристалла (ромбической призмы), на рис. 1,6 — боковая грань с показом расположения ега структурных элементов в узлах плоских решеток, из которых слагается пространственная решетка. По трем взаимно перпендикулярным направлениям расстояния между плос кими решетками различны и относятся как а, в .с. Однако  [c.3]


    Тип кристаллографической системы в некоторой степени определяется сложностью строения вещества. С упрощением состава вещества обычно повышается симметрия его кристаллов. Так, наиболее простыми являются химические элементы, которые в большинстве случаев кристаллизуются в кубической или гексагональной сингониях. В таких же системах кристаллизуются и простые неорганические соединения. Например, кристаллы Na l, K l, КВг, KJ, NaF относятся к кубической сингонии. По мере усложнения химического состава все реже встречаются примеры кристаллов высокой симметрии, и преобладающими становятся ромбическая и моноклинная системы. [c.23]

    При образовании минералов в природных условиях также преобладали упорядоченность и простота построения. Число известных типов минералов составляет примерно 3000, но все их разнообразные кристаллические формы являются вариантами семи основных кристаллографических систем кубической, тригональной, гексагональной, тетрагональной, ромбической, моноклинной и триклинной. При этом кубическая система служит основой всех остальных (рис. 8.1). [c.99]

    В качестве общего заключения по всем рассмотренным структурам можно сказать следующее. Для всех характерно наличие плотно заполненных плоскостей, в которых лежат центры ртутных группировок и отдельных атомов ртути и хлора. В пространстве эти плоскости пересекаются под углами, близкими к 60% а линии их пересечений представляют ряды с разным законом чередования атомов или центров их компактных групп. В кубических структурах эти ряды идут вдоль тройных осей и, следовательно, есть четыре одинаковых системы параллельных рядов разных направлений. Как следствие, возникают взаимно перпендикулярные плоскости с квадратными сетками атомов. В моноклинных и ромбических структурах представлено, как правило, одно направление регулярных рядов-линий пересечений трех плоскостей, составляющих угол около 60°, но более низкая симметрия допускает разнообразные вариации их заполнения. Таким образом, главным структурообразующим фактором в рассмотренных структурах следует считать концентрацию основных атомов или центров их компактных фрагментов на симметрично связанных кристаллографических плоскостях с межплоскостными расстояниями в интервале 3,23 —2,50А, пересекающимися под углом около 60°. Эти плоскости часто дают интенсивные рефлексы на порошкограм-мах и могут быть выделены по этим признакам, даже если кристаллическая структура вещества неизвестна. Атомные позиции концентрируются возле линий пересечения таких плоскостей, образуя линейные ряды, характер заполнения которых определяется химическим составом соединения. В то же время стремление к минимальным трансляциям, свойственное всем структурам, принуждает разные по составу атомные ряды к соразмерности, что наблюдалось в анализированных структурах и отмечалось в тексте и на рисунках. [c.114]

    Изучение явлений, происходящих при потемнении других пигментов под действием света, показало, что в ряде случаев такое потемнение является следствием изменения кристаллографической формы частиц пигмента. Так, например, Сапгир и Рассудова [28], исследуя свинцовые крона, установили, что последние могут состоять из частиц либо ромбической, либо моноклинической системы. Более стабильным, но и более темным является крон, состоящий из моноклинических частиц. При действии света на крон, состоящий из ромбических частиц, последние перекристаллизовываются в частицы моноклинической системы, поэтому и происходит потемнение крона. Данные Сапгира и Рассудовой позже были подтверждены рядом работ. [c.84]

    В ТОЧНОСТИ ИИ свойств дисперсии, ни величины угла оптических осей. При всем ТОМ, если приведенные здесь кристаллографические и оптические исследования триметилкарбинола нельзя считать в отдельности совершенно законченными, то в совокупности они настолько дополняют друг друга, что кристаллы этого вещества можно безошибочно отнести к ромбической системе, как это и было предложено проф. бароном Розен Шестигранная призма представляет в этом случае не что иное, как ромбическую призму в 120° (или близкую к этому) в комбинации с брахипинакоидом и основной неконечной плоскостью. Плоскость оптических осей параллельна основанию призмы, и острая биссектриса нормальна к плоскости брахипинакоида . [c.260]

    Таким образом, обе разновидности кристаллов следует признать отвечающими одному и тому же тетрабромиду С4НвВг4, а различие в их наружном виде и постоянстве при хранении отнести иа счет диморфизма. И действительно, кристаллографическое исследование их, любезно произведенное Е. С. Федоровым, показало, что обе разновидности кристаллов кри-ста.т1лизуются в различных системах. Кристаллы, получаемые при обыкновенной температуре, — в кубической системе получаемые на морозе — в ромбической [12]. [c.51]

    Вещество было передано для кристаллографического исследования в минералогическую лабораторию проф. В. И. Вернадского, где и было изучено Н. И. Сургуновым, любезно сообщивщим о нем следующие сведения Кристаллы (рис. 1) ромбической системы (голоэдрия). [c.272]

    При медленном испарении растворителя или охлаждения насыщенных растворов левый амид выделяется в виде больших прекрасно образованных кристаллов, по внешнему виду не отличимых от кристаллов правого антипода. Кристаллографическое исследование, произведенное Г. Касперовичем в минералогическом кабинете проф. В. И. Вернадского [9], вполне подтвердило тождество кристаллической формы обоих антиподов. Кристаллы относятся кгемиедрии ромбической системы, к классу Зи. Отношение осей 0,6548 1 0,7058. Из простых форм наблюдались 010 , П0[, 011[, 210[ и 012 . [c.276]


Смотреть страницы где упоминается термин Ромбическая кристаллографическая система: [c.303]    [c.85]    [c.482]    [c.100]    [c.482]    [c.54]    [c.239]    [c.102]    [c.76]    [c.16]    [c.51]    [c.62]    [c.82]   
Химия (1978) -- [ c.37 ]

Общая химия (1974) -- [ c.762 , c.764 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллографические системы сингонии ромбическая

Ромбическая



© 2025 chem21.info Реклама на сайте