Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Триклинные кристаллы

    Индивидуальные н-алканы С24 и Сге имеют два фазовых перехода гексагональные кристаллы моноклинные триклинные. Кристаллы последней сингонии являются устойчивыми при комнатной температуре. [c.85]

    Для триклинного кристалла квадратичная форма в развернутом виде состоит из шести членов. Для ромбического кристалла она сводится к трем членам  [c.66]

    Свойства. Большие прозрачные или молочно-белые, триклинные кристаллы. [c.1895]


    По геометрии размещения рефлексов на рентгенограммах можно оценить и угловые параметры решетки. Последнее существенно только при исследовании моноклинных и триклинных кристаллов. [c.67]

    Структурной единицей кристалла, отличающегося от кубического, является параллелепипед. Это общая структурная единица для наиболее распространенного вида кристаллов — триклинных кристаллов (см. подраздел после примера 2.2). Такой триклинный параллелепипед можно описать, указав размеры трех ребер а, й и с и величины углов а, р и 7 между каждой парой ребер. [c.35]

    Симметрия кристаллов, относящихся к этим системам, такова, что их структурные единицы (элементарные ячейки) можно найти опреде-ленными способами (исключение составляют триклинные кристаллы) [c.37]

    Триклинные кристаллы три ребра а, Ь и с образуют между собой углы а, р и V. [c.37]

    Рпс. 66. Грани триклинного кристалла, отсекающие на осях О У п 0Z неравные отрезки в отношении 1 1 (а) и 2 1 (6) [c.47]

Рис. 66. Грани триклинного кристалла, отсекающие на осях ОУ и 02 неравные отрезки в отношении 1 1 (д) и в отношении 2 1 (б) Рис. 66. Грани триклинного кристалла, отсекающие на осях ОУ и 02 неравные отрезки в отношении 1 1 (д) и в отношении 2 1 (б)
    В кристаллах триклинной сингонии нет никаких элементов симметрии, кроме центра, поэтому любые три ребра кристалла (действительные или возможные), не лежащие в одной плоскости, могут быть взяты за координатные оси, любая грань, пересекающая все три координатные оси,— за единичную. Соответственно сказанному установка триклинных кристаллов будет записана так аф =й= р =у = 90°, аф Ьф с. Описывать такой кристалл надо в косоугольной системе координат и измерять параметры ло каждой из координатных осей своим масштабом. [c.49]

    В качестве одной из характеристик триклинных кристаллов ис= пользуется указание ориентировки осей индикатрисы, а именно, какая [c.31]

    Нафтацен образует триклинный кристалл, что усложняет измерение спектра. Направления экстинкции, найденные с помощью поляризационного микроскопа, не совпадают с направлениями осей кристалла, и, кроме того, экстинкция меняется с длиной волны. Для спектрографического [c.552]

    Нафтацен имеет систему полос при 4800 А с интенсивностью / = 0,08 (приведена на рис. 9 слева), которая похожа по общей структуре на только что рассмотренную систему антрацена. Здесь также видна хорошо развитая прогрессия с расстоянием между компонентами 1400 см . Как уже было сказано, трудность работы с триклинными кристаллами нафтацена состоит в том, что оси кристалла здесь не связаны простым образом с направ- [c.554]


    В кристаллах триклинной сингонии нет никаких элементов -симметрии, кроме центра, поэтому любые три ребра кристалла (действительные или возможные), не лежащие в о-дной плоско-сти, могут быть взяты за координатные оси, любая грань, пересекающая все три координатные оси, — за единичную. Соответственно -сказанному установка триклинных кристаллов будет записана так ф 4 Ф 9QP, а фЪ ф с. Описывать [c.58]

    В кристаллах кубической и ромбической сингоний симметрия огранки определяет направление всех трех осей вполне однозначно. В остальных случаях гониометрические данные недостаточны для правильного выбора системы. Это касается осей X я У тетрагональных кристаллов, осей Хх, Х , Хз — гексагональных, X и Z — моноклинных и всех трех осей — в случае триклинных кристаллов. [c.237]

Рис. 185. Элементарная ячейка триклинного кристалла Рис. 185. <a href="/info/4904">Элементарная ячейка</a> триклинного кристалла
    Предположим, что мы имеем дело с триклинным кристаллом, и допустим, что с осью головки совпадает ось 1 кристалла. В качестве исходного положения кристалла удобнее всего принять ориентацию, при которой ось 1 направлена вертикально (ползун стоит на нулевом делении лимба дуги), а ось К расположена так, что луч проходит по плоскости XI, причем, если смотреть со стороны диафрагмы, нормаль к плоскости (010) направлена вправо (рис. 153, в). При такой ориентации расположение осей кристалла в камере идентично расположению их на стереографической проекции при обычной установке (на рис. 153, б изображен вид сверху на камеру, на [c.244]

Рис. 207. Смещение нулевого узла л-ной сетки с оси вращения в случае триклинного кристалла Рис. 207. <a href="/info/1020987">Смещение нулевого</a> узла л-ной сетки с оси вращения в случае триклинного кристалла
    Принимая это во внимание, легко сообразить, какую ориентацию следует придать кристаллу, чтобы определить его дифракционный класс быстрейшим путем. Кристаллы средних сингоний следует располагать главной осью вдоль пучка разным дифракционным классам отвечают здесь разные по симметрии рентгенограммы. Если есть сомнение в принадлежности кристалла к ромбической, моноклинной или триклинной сингонии, следует расположить вдоль пучка то направление его, которому отвечает возможная ось симметрии триклинный кристалл даст рентгенограмму асимметрией Сь моноклинный — Сг, ромбический — Сгг -Для того чтобы отличить друг от друга классы Г и кубической сингонии, тоже достаточно одной рентгенограммы (ось симметрии второго или четвертого порядка — по пучку). Если имеются сомнения в принадлежности кристалла к кубической сингонии, можно снять рентгенограмму, совместив с пучком направление, по которому должна проходить ось третьего порядка. [c.256]

    Таблица 14 и триклинных кристаллов [c.275]

    Только в триклинных кристаллах. [c.276]

    Наиболее сложен случай триклинного кристалла. Здесь необходимо найти и направление и величину сдвига нулевого узла п-ной сетки с оси вращения. [c.339]

    Само индицирование (второй этап) производится так, как это было описано для триклинного кристалла. [c.340]

    Свойства. Бесцветные триклинные кристаллы в виде палочек, d 2,800. Лри нагревании несколько выше 60 °С превращается в различные основные нитраты висмута(III), а при более высоких температурах — в а-В1гОз. Растворим в сильных неорганических кислотах, а также в глицерине и ледяной уксусной кислоте. Водой разлагается с образованием основных солей. [c.647]

    Свойства. Кристаллическая решетка NaBs08-5H20 триклинная кристаллы имеют форму тупых косоугольных призм. В 100 г раствора при 0°С растворяются 9,24 г соли. [c.878]

    Свобства. Rbs raO имеет три модификации. Формы А и В совместно осаждаются из раствора выше 35 С. Оранжевые моноклинные или красные триклинные кристаллы. Rba rjO умеренно растворим в воде (5% при 18 °С). [c.1627]

    Свойства. Оранжево-красные триклинные кристаллы. Малорастворнмы в холодной и хорошо растворимы в горячей воде. [c.1628]

    Триклинные кристаллы дигидрата в форме пинакоидов образуются только из растворов, не содержащих КС1. Уже при комнатной температуре они выветриваются с потерей воды. Из водного раствора тетранитроплатииата, содержащего стехиометрическое количество аммиака, образуется осадок [c.1822]

    Дикальцийфосфат СаНРО — бесцветные триклинные кристаллы, плотность 2,89. Кристаллизуется из водных растворов при температуре выше 36 С. Ниже 36° С кристаллизуется днгидрат СаНР04 2Н20, в виде моноклинных кристаллов с плотностью 2,31. Растворимость в воде дигидрата составляет 0,025 (0° С) и 0,133 (60° С) г/100 г Н2О. [c.12]

    Примером соединений с безошибочно определяемой симметрией на основании внешних очертаний кристаллов можно назвать гексагональный хлорид таллия (см. гл. 3, рис. 180). Симметрия ромбических соединений тоже во многих случаях хорошо выявляется. Так, например, очертания кристаллов перхлората калия (см. гл. 3, рис. 3), фосфар магния и аммония (см. гл. 3, рис. 10) исключают возможность наличия осей выше второго порядка видны две плоскости симметрии, перпендикулярные к чертежу, что позволяет предполагать ромбическукэ сингонию свойственная кристаллам симметрия обнаруживается и у дендритных, форм. Меньше признаков для различия симметрии в микрохимическом препарате имеют моноклинные и триклинные кристаллы, однако от ромбических они отличаются большим количеством косых углов и менее симметричными контурами. [c.9]


    Вследствие того, что у трикливных кристаллов не существует никакой общей закономерности в расположении осей индикатрисы и опти ческих осей относительно граней и ребер, все эти оси лишь в исключительных случаях проходят перпендикулярно или параллельно к граням. Поэтому триклинные кристаллы под микроскопом обычно обнаруживают косое погасание, и угол погасания имеет значение константы. [c.31]

    При коноскопическом исследовании триклинных кристаллов наблюдаются преимущественно фйгуры косого несимметричного разреза, что с определенностью указывает на двуосность кристаллов, и в больщин-стве случаев позволяет определить их оптический знак.  [c.33]

    Оси кристаллов в образце должны точно совпадать с направлениями поляризации света, используемого для записи спектров. В моноклинном кристалле и в кристаллах более высокой симметрии по крайней мере одна из осей кристалла соответствует направлению экстинкции под поляризационным микроскопом и может быть найдена и определена таким путем наряду с коноскопическим исследованием в соответствии с хорошо известными методами, предложенными Хартшорном и Стюартом [45]. В триклинных кристаллах направления, связанные с оптическими свойствами, не связаны так просто с осями кристалла. Кроме того, эти направления меняются с частотой рассматриваемого света. Иногда информация может быть получена из других источников. Так, например, между триклинным тетраценом и моноклинным антраценом существует сходство в оптических свойствах, которое проявляется в том, что направление экстинкции, которое в антрацене фиксировано вдоль оси Ь, довольно близко к оси Ь в тетрацене. Синклер [91 ] показал, что отклонение составляет приблизительно 2° для видимого света, а Бри и Лайонс при 2300 А нашли отклонение, равное 12°. [c.546]

    Если при охлаждении кристалла гексаметилбензола быстро пройти температуру перехода около 110° К, то можно заморозить высокотемпературную Аюдификацию кристалла, что впервые наблюдал Броуде [11] и что было несколько раз подтверждено позднее. Поэтому существует интересная возможность исследования триклинных кристаллов, устойчивых при комнатной температуре, при температурах ниже точки перехода, как это совсем недавно было сделано Данном и др. [35], проводившими работу при 4° К. Таким образом, существует гораздо больше спектральной информации о высокотемпературной форме, чем о низкотемпературной. [c.560]

    Семь кристаллических систем образуют 14 различных видов (классов) пространственных решеток, известных как решетки Бравэ , которые показаны на рис. 2.1. Класс триклинных кристаллов и соответствующая им нространствен-ная решетка имеют самую низкую симметрию, то есть у кристаллов подобного тина отсутствуют оси симметрии. Для триклинной структуры Класс моноклинных кристаллов имеет одну ось симметрии и характеризуется условиями а = р = 90°, у 90° иа ЬФс.Ъ этот класс входят две решетки Бравэ. Орторомбические решетки имеют три взаимно-перпендикулярные оси и три плоскости симметрии характеризуется условиями а=р = у = 90°ий б5 с. Класс тетрагональных кристаллов имеет пять взаимно-перпендикулярных осей и пять плоскостей симметрии характеризуется условиями а = р = у = 90° и й = 6 с. Тригональная (ромбоэдрическая) решетка обладает семью осями симметрии плюс плоскости гексагональная — характеризуется 14-ю осями и плоскостями симметрии, кубическая — 22-мя осями. [c.40]

    По интенсивности рассматриваемой полосы 720 сж много лет проводилась приблизительная оценка длины цепей или степени разветвления. Этот способ хорошо применим для углеводородов с концевыми алициклическими группами, так как метиленовые группы циклов в этой области не поглощают [51, 52]. Однако интерес к этой полосе обусловлен тем, что у кристаллических углеводородов происходит ее расщепление на дублет в результате взаимодействия метиленовых групп соседних цепей. Эта особенность использовалась, например, для оценки степени кристалличности полиэтилена и изучалась весьма интенсивно. Изучение отдельных кристаллических парафинов показывает, что у очень немногих соединений с четным числом СНг-групн имеется только одна полоса. Это относится к парафинам je, С22 и С24 и обусловлено тем, что именно эти соединения кристаллизуются, не давая обычной ромбической структуры, в которой соседние метиленовые цепи бывают расположены подходящим образом для специфического межмолекулярного взаимодействия [53, 54, 55]. Однако парафин С24 может быть получен также и в ромбической форме, тогда будет происходить расщепление полосы [55]. Одиночные полосы были найдены у таких веществ с длинной цепью, содержащих заместители, как сложные эфиры, 1-моноглицериды и триглицериды [54]. Эти соединения образуют гексагональные кристаллы, в которых цепи в каждой ячейке эквивалентны, в результате чего на элементарную ячейку приходится как бы одна цепь, и в спектре образуется только одна полоса поглощения. Аналогичные особенности кристаллической структуры определяют возможность расщепления полосы у карбоновых кислот и соединений с другими полярными заместителями. Эти эффекты следует принимать во внимание при рассмотрении надежности результатов по оценке кристалличности на основании расщепления полосы 720 Вообще ромбические и моноклинные кристаллические парафины содержат две цепи на элементарную ячейку и дают дублетную полосу, тогда как триклинные кристаллы содержат только одну цепь в элементарной ячейке и поэтому имеют только одну полосу. Более сложная [c.24]

    Рис. 153. а —рентгеновская камера для определения периодов идентичности РКОП Кл — коллиматор Д — дуга П — ползун Б—барабан Г — гониометрическая головка М—мотор К — кассета полуцилиндрическая К.П — кассета плоская % — ось гониометрической головки 1 1 — ось качания б — камера РКОП (вид сверху) в — исходная ориентация триклинного кристалла, укрепленного на гониометрической головке камеры г — стереографическая проекция кристалла при его исходной ориентации. Показаны углы поворота гониометрической головки в ползуне (угол ф) и ползуна по дуге (угол р), выводящие направление [тпр] на ось вращения камеры [c.245]

    Компо не нты лЯ ) , определенные из рентгенограммы при помощи сетки, представляют собой расстояния точек поверхности сферы отражения от оси вращения. Остается найти такие же расстояния в узловых сетках обратной решетки, перпендикулярных оси вращения. В принципе аналитический расчет в этой части проще, чем на первой стадии индицирования. Поскольку, однако, значения яЯ , найденные из рентгенограммы, являются пр бл иженным и (конечные размеры пятен, сдвиг пятен вследствие поглощения в кр исталле и пр.), не имеет смысла добиваться высокой точности и на второй стадии расчета. Поэтому графический расчет всех возможных значений хН в каждой узловой сетке я вляeт я более целесообразным, чем аналитическип. В особенности это относится -к моноклинным и триклинным кристаллам. [c.338]


Смотреть страницы где упоминается термин Триклинные кристаллы: [c.115]    [c.227]    [c.122]    [c.664]    [c.64]    [c.732]    [c.450]    [c.755]    [c.238]    [c.316]    [c.345]   
Происхождение жизни Естественным путем (1973) -- [ c.286 ]




ПОИСК







© 2025 chem21.info Реклама на сайте