Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы образование

    Примером вещества с атомной решеткой является алмаз. Его кристаллическая решетка состоит из атомов углерода, каждый из которых связан ковалентными связями с четырьмя соседними атомами, размещающимися вокруг него в вершинах правильной трехгранной пирамиды — тетраэдра. Поскольку ковалентная связь образуется в результате перекрывания орбиталей соединяющихся атомов, которые имеют вполне определенную форму и ориентацию в пространстве, то ковалентная связь является строго направленной (в отличие от ионной связи). Этим, а также высокой прочностью ковалентной связи объясняется тот факт, что кристаллы, образованные атомами, имеют высокую твердость и совершенно непластичны, так как любая деформация вызывает разрушение ковалентной связи (например, у алмаза). Учитывая, что любые изменения, связанные с разрушением ковалентной связи в кристаллах (плавление, испарение), совершаются с большой затратой энергии, можно ожидать, что у таких кристаллов температуры плавления и кипения высоки, а летучесть очень мала (например, у алмаза температура плавления составляет 3500 °С, а температура кипения —4200 °С). [c.42]


    При достаточном избытке жидкой фазы при данной температуре, способной удерживать в растворе все группы твердых углеводородов, кроме одной, по мере охлаждения раствора остальные типы углеводородов могут кристаллизоваться на решетках первично образовавшихся кристаллов. Если будет сохраняться некоторое оптимальное отношение между выделяющимися углеводородами, то форма кристалла будет соответствовать первично образующейся. В идеальном случае на решетке первично образующихся кристаллов будут накапливаться все более низкоплавкие углеводороды. Та часть их, которая при данной температуре не перешла в кристаллическое состояние, в конечном слое кристаллической решетки представляет собой ориентированные жидкие кристаллы. Образование ориентированных жидких кристаллов обусловлено стремлением молекул расположиться энергетически наиболее выгодным образом вплотную и параллельно друг другу. Зто так называемое вообще говоря, ха- [c.96]

    С увеличением числа взаимодействующих атомов в системе увеличивается число орбиталей (энергетических состояний). В системе из двух атомов каждая пара атомных энергетических состояний расщепляется на два энергетических состояния (см. рис. 21) в системе из четырех атомов — на четыре, в системе из восьми — на восемь и т.д. Если кристалл образован Л атомов, тогда каждое атомное энергетическое состояние сместится и энергетически расщепится на N состояний (рис. 63). Так как /V очень велико (в 1 см металлического кристалла содержится 10 —10 атомов ), то велико и /V состояний, совокупность которых составляет энергетическую зону. В пределах энергетической зоны энергетическое различие состояний электрона составляет всего лишь 10 эВ. Орбитали энергетической зоны можно считать аналогами молекулярных орбиталей, простирающихся по всему кристаллу. [c.100]

    Узлы молекулярной решетки образованы молекулами. Молекулярную решетку имеют, например, твердый водород, кислород, азот, галогены, благородные газы, диоксид углерода, а также многие органические вещества. Структуру молекулярных кристаллов, образованных [c.136]

    Обращает на себя внимание также связь между 0с и особенностями характера химической связи. Так, для кристаллов веществ, отличающихся наличием преимущественно слабых связей поляризационного типа, характерны соответственно и минимальные величины сил сцепления, на что указывают наименьшие значения 0о. Относительно низкие значения сил сцепления характерны также для кристаллов, образованных щелочными металлами. Мак-82 [c.82]


    Так как поверхностная работа твердых тел часто значительно превышает поверхностную работу жидкостей, то наблюдаются существенные количественные различия при образовании жидких и твердых трехмерных зародышей. Большое значение имеет также различие в условиях роста жидкой и твердой фаз. При возникновении жидкой фазы присоединение частиц к образовавшемуся зародышу происходит практически беспрепятственно, тогда как, например, при послойном росте кристалла образование каждого нового слоя требует возникновения двумерного зародыша. [c.315]

    При показе микропроцессов, наблюдаемых в натуре только с помощью хороших оптических и электронных микроскопов, недоступных в настоящее время для школ. Киноматериалы, снятые в специально оборудованных лабораториях и снабженные квалифицированными комментариями учителя или диктора, обладают научной достоверностью и могут быть показаны всему классу одновременно. Например, рост кристаллов, образование устойчивой оксидной пленки, процессы растворения и пр. [c.106]

    Если атомы, находящиеся в междоузлиях, стремятся перейти на поверхность кристалла, то вакансии, наоборот, стремятся быть внутри кристалла. Образованию вакансий, как и других дефектов, благоприятствует тенденция всех систем к переходу в состояние с большей степенью беспорядка или большей энтропией. [c.173]

    Созданию электронной теории катализа на полупроводниках посвящены работы Ф. Ф. Волькенштейна. В этой теории рассматривается полупроводниковый катализатор, представляющий"собой идеальный кристалл, образованный ионами с оболочкой инертного газа. При отличной от абсолютного нуля температуре в зоне проводимости такого кристалла имеются электроны, обеспечивающие свободные валентности на его поверхности. Эти электроны участвуют в образовании связей адсорбирующихся частиц с поверхностью кристалла. Возможны три типа связи. 1. Слабая гомеополярная связь, обеспечиваемая валентным электроном одного из адсорбирующихся атомов, затягиваемым в зону проводимости кристалла. 2. Прочная гомеополярная связь, в которой кроме этого электрона участвует электрон кристалла, переходящий на локальный энергетический уровень, возникающий в запрещенной зоне кристалла в результате адсорбции. 3. Ионная связь, образующаяся при переходе валентного электрона адсорбированного атома в решетку кристалла. Наиболее реакционноспособны состояния со слабой связью, так как они характеризуются ненасыщенными валентностями. [c.279]

    Ионные кристаллические решетки. Эти решетки характерны для кристаллов, образованных, как правило, элементами, значительно различающимися по своей электроотрицательности, например галогениды щелочных и щелочноземельных металлов и др. Заряды в ионных решетках в значительной степени локализованы на частицах, находящихся в узлах решетки. Отсюда структура таких решеток обусловливается ионной связью между заряженными частицами. Наряду со стремлением к наиболее компактной упаковке, в ионных соединениях каждая частица одного знака стремится окружить себя частицами противоположного знака. [c.143]

    Количество же частиц, непосредственно примыкающих к данной, определяют как координационное число. В. кристаллах, образованных сферическими частицами одинакового размера, их плотнейшая упаковка может осуществляться в виде двух энергетически равноценных структур кубической и гексагональной (рис. ИМ). Координационное число для каждой из этих структур равно 12, а сами сферы занимают 74 % полного объема кристалла. В подобных структурах кристаллизуются большинство металлов и сплавов, благородные газы, ряд соединений, молекулы которых обладают близкой к сферической симметрией, например СН4, СО2. Если частицы, образующие кристалл, не являются сферическими или имеют разные размеры, то их плотнейшая упаковка будет искажаться. При этом значение координационного числа будет меньше 12, а доля незанятого объема в кристалле будет расти. [c.66]

    Технический продукт окрашен в серый цвет примесью свободного углерода. Чистый СаСг представляет собой бесцветные кристаллы, образованные ионами Са " и СГ (рис. Х-5). о 9 о С водой (даже ее следами) карбид кальция энер-гично реагирует, образуя ацетилен (Н— s —Н) i I i по уравнению [c.498]

    Природу связи в металлических решетках нельзя понять в рамках известных Вам представлений о химическом взаимодействии. Ионная связь в чистых металлах невозможна, так как кристалл образован атомами одного и того же. ...  [c.236]

    Жидкие кристаллы были открыты в результате наблюдений за процессами плавления. При плавлении некоторых веществ образуется мутная жидкость, обладающая интенсивным светорассеянием. Это явление особенно удобно наблюдать в капилляре. Оно встречается у сильно диспергированного кристаллического вещества. Последующее изучение показало, что мутные расплавы обнаруживают двойное лучепреломление, которое свойственно истинным кристаллам. Благодаря этому свойству такие вещества и назвали жидкими кристаллами. При дальнейшем нагревании мутный расплав переходит в прозрачную жидкость, обладающую изотропными свойствами. Например, холесте-рилбензоат плавится при 145°С с образованием мутной жидкости и затем при 179° С переходит в прозрачный расплав. В жидком состоянии молекулы располагаются беспорядочно. В жидко-кристаллическом состоянии наблюдается определенная взаимная ориентация молекул. Длинные оси молекул располагаются параллельно одна другой, о обстоятельство является причиной существования дальнего порядка в одном или двух направлениях и тем самым анизотропности физических свойств жидких кристаллов. Образование жидко-кристаллического состояния при плавлении истинного кристалла сопровождается лишь частичным разрушением дальнего порядка, создающим некото- [c.242]


    Химические индивиды представляют собой как простые вещества, так и сложные (соединения). Простые вещества можно рассматривать как частный случай соединений постоянного состава, которые целесообразно назвать дальтонидами в узком смысле. К этому же классу следует отнести и сложные веш,ества, обладающие молекулярной кристаллической решеткой (наиример, твердый СО2). Отличительный признак молекулярных кристаллов— образование фаз постоянного состава. Таким образом, на диаграмме состояния эти соединения представляют собой линейные фазы с нулевой областью гомогенности (см. рис. 162). [c.359]

    В молекулярных кристаллах, образованных от полярных молекул, наиболее сильна ориентационная связь, а из неполярных — дисперсионная. [c.52]

    Как указывается в работе [17], имеется высокая вероятность образования плоских зародышей растворения твердого тела (моно-атомных углублений) на тех участках поверхности, на которых плотность энергии решетки и химический потенциал больше такими местами прежде всего являются окрестности выхода краевых дислокаций. Поскольку на грани совершенного кристалла образование зародышей растворения носит случайный характер и требует относительно больших затрат энергии, то, если скорость [c.28]

    Аллотропные видоизменения элементарных веществ представляют собой вещества, построенные из различных молекул (или кристаллов), образованных атомами одного и того же химического элемента. Аллотропные видоизменения одного элемента имеют различные свойства, проявляемые в различ.чых агрегатных состояниях. Наряду с аллотропией известно также явление полиморфизма— способности одного и того же вещества существовать в различных кристаллических формах. Полиформизм может быть двух видов э н а и т и о т р о п и ы й, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотроп-н ы й, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же [c.111]

    Кристаллические решетки металлов имеют высокие координационные числа атомов (ионов), которые определяются числом ближайших соседей, окружающих данный атом (см. 9.1). Большинство металлов кристаллизуются в структурах плотнейших упаковок — гексагональной (Mg, Ве, d, Zn и др.) или гранецентрированной кубической (Си, Ag, Au, Al, Ni и др.). Такие структуры характерны для кристаллов, образованных сферическими частицами одинакового размера (рис. 5.11), координационное число для них равно 12, степень заполнения пространства составляет74%. Щелочные металлы, а также V, Сг, W и другие имеют кубическую объемно центрированную решетку, координационное число равно 8. Атомам металлов свойственны небольшие энергии ионизации, наименьшие для атомов щелочных металлов, и положительные степени окисления (см. 4.5). [c.121]

    В промышленных масштабах га-ксилол, как уже указывалось, выделяют простой кристаллизацией. п-Ксилол кристаллизуется в виде гексагональных призм. При получении из раствора кристаллов следует различать две стадии юбразование и рост кристаллов. Образование кристалла и его последующий рост имеют общую движущую силу — пересыщение раствора. Пересыщение раствора достигается охлаждением его до температуры ниже температуры начала кристаллизации. В промышленных кристаллизаторах непрерывного действия кристаллы образуются и растут одновременно. Относительные скорости образования и роста кристаллов определяют распределение получаемых кристаллов по размерам. Данные об этих скоростях, пригодные для расчетов оборудования при получении п-ксилола, отсутствуют, однако изучение работы промышленных кристаллизаторов позволяет сделать некоторые выводы. [c.100]

    Металлические твердые растворы. Металлы характеризуются повышенной склонностью растворять металлы и в мень[пей степени неметаллы. Эта способность следствие предельной нелокализованности металлической связи. Вследствие дефицита электронов (см, рис, 64) валентная зона металлическ010 кристалла может принимать некоторое число добавочных электронов, не вызывая изменений структуры и металлических признаков кристалла. Образованию твердых растворов благоприятствует близость химических свойств, атомных радиусов и типов кристаллической структуры исходных вешеств (см. с. III). Несоблюдение одного из этих [c.205]

    Образо11ание тонких слоев этих соединений на поверхности металла вызывает яоявленне цветов побежалости, увеличение толщины слоя продуктов реакции лриводит к окалине. Стадии этого довольно сложного процесса включают адсорбцию газа на поверхности, реакции на поверхности раздела, фаз, образование зародышей кристаллов, образование поверхностного слоя и про-дессы диффузии подвижных частиц сквозь этот слой в обоих направлениях. Это движение обусловлено уменьшением концентрации реагирующих частиц на поверхности и возникшим вследствие этого градиентом концентрации диффундирующих по ионным вакансиям катионов металла (например, Си+) и одновременным движением дефектов электронов (дырок) (например, Си +) к поверхности раздела твердых фаз. На поверхности протекает окислительно-восстановительная реакция с образованием нового твердого вещества. Для системы Си/Оа происходит, например, образование оксида меди(1)  [c.436]

    КРИСТАЛЛОГИДРАТЫ — кристаллы, образованные гидратированными. молекулами. В зnви и ю ти от условия одна и та же соль может кристаллизоваться с разны числом молекул воды, например  [c.140]

    Тип III — специфические адсорбенты, несущие на поверхности отрицательные заряды грани кристаллов, образованные преимущественно анионами, или поверхности пористых полимеров с выходящими наружу нитрильными, карбонильными или эпокситруппами. Адсорбирующие поверхности третьего типа можно также лолучить, нанося на поверхность какого-либо адсорбента-носителя плотные монослои молекул группы В, содержащие, например, нитрильные группы, или заменяя химическим путем функциональные группы на поверхности адсорбента второго типа (например, труппы ОН на поверхности кремнезема) на такие входящие в [c.13]

    Одному макроскопическому состоянию соответствует огромное число различных микроскопических состояний, т. е. различных совокупностей состояний частиц, образующих эту систему. Задать микроскопическое состояние макроскопической системы — это значит задать состояние каждой ее частицы. Даже в твердом теле при любой температуре, отличной от абсолютного нуля, происходит непрерывное изменение состояния отдельных частиц (в этом случае колебательных состояний). Если кристалл, образованный N атомами, имеет энергию, соответствующую возбуждению всего-навсего одного атома, то поскольку в разные моменты времени эта энергия будет сосредоточена на разных атомах, то число различных микроскопических состояний будет равно N. А ведь речь идет о практически недостижимом макроскопическом состоянии, предельно близком к абсолютному нулю температуры. В любом же реальном случае число различных микроскопических состояний, соответствующих определенному макроскопическому состоянию, будет невообразимо велико. Поэтому можно сказать, что любому макроскопическому состоянию свойственна определенная неупорядоченность. Она резко возрастает при переходе к жидкому и тем более газовому состоянию, так как здесь частицы могут находиться в разных точках системы, иметь различную скорость поступательного движения, различные вращательные состояния. [c.136]

    Одному макроскопическому состоянию соответствует огромное число различных микроскопических состояний, т. е. различных совокупностей состояний частиц, образующих систему. Задать микроскопическое состояние макроскопической системы — это значит задать состояние каждой ее частицы. Даже в твердом теле при любой температуре, отличной от абсолютного нуля, происходит непрерывное изменение состояния отдельных частиц (преимущественно колебательных состояний). Пусть кристалл, образованный N атомами, имеет энергию, соответствующую возбуждению всего-навсего одного атома поскольку в разные моменты времени эта энергия сосредоточена на разных атомах, то число [c.155]

    На практике часто приходится иметь дело с аморфными полимерами, которые по разным причинам или вообще не кристаллизуются или кристаллизуются лишь в незначительной степени. Простейшим элементом надмолекулярной структуры аморфных полимеров является глобг/ла — трехмерное образование, имеющее только ближний порядок в расположении осей макромолекул и размер того же порядка, что и кристаллит. Образование развитых структур, как правило, не наблюдается. [c.102]

    При образовании молекулярного кристалла, в котором взаимодействия сводятся к вандерваальсовым, перераспределения электронов между молекулами не происходит. Так как вандерваальсовы взаимодействия много слабее кулоновских и ковалентных, молекулярные кристаллы имеют заметно более низкие энергии связи и температуры плавления. Для них характерна плотнейшая упаковка частиц. Наиболее распространены молекулярные кристаллы, образованные органическими веществами (например, углеводородами). Примером неорганических молекулярных кристаллов является затвердевшие благородные газы, [c.176]

    Вещества с молекулярными кристаллическими решетками. Их свойства. Энергия решеток. Молекулярные кристаллы состоят из индивидуальных молекул ( I2, 12. I4, СО2, СдНв, Sg и т. д.). В большинстве органических веществ молекулярные решетки. Межмолекулярные силы в таких решетках малы (дисперсионные, междипольные, индукционные и иногда силы водородных связей). Дисперсионные силы обладают шаровой симметрией воздействия. Поэтому, когда действуют только они, образуется плотнейшая упаковка молекул в кристалле. Так, кристаллы, образованные из одноатомных молекул благородных газов, имеют гранецентрированную кубическую элементарную ячейку, не искаженную каким-либо взаимодействием направленного характера. Другие вещества с более сложными молекулами, в которых атомы связаны ковалентными связями, образуют кристаллы более [c.130]

    Энергию вандерваальсовых кристаллов, образованных многоатомными молекулами, оценивают часто, суммируя парные атом-атомные взаимодействия (об атом-атомных потенциалах см. разд. П.6). [c.182]

    Теоретический расчет энергии кристалла при Т = О К требует оценки энергии статической решетки и энергии нулевых колебаний Бокол- Методы оценки величины окол будут рассмотрены в следующем параграфе. Здесь мы остановимся на методах расчета величины Но, энергии статической решетки 7 = 0. Пренебрегая влиянием ангармоничности колебаний при Т = О, будем считать, что величина (Уо есть минимальное значение потенциальной энергии взаимодействия частиц, образующих кристалл. Для расчета этой величины требуется знать потенциал межчастичного взаимодействия. Наиболее доступными для теоретического рассмотрения являются такие одноатом- ные кристаллы, в которых силы сцепления чисто ван-дер-ваальсовы (кристаллы Аг, Кг и др.), и ионные кристаллы, образованные одно- [c.313]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Более поздние исследования структуры подобных соединений показали, что они представляют собой особый класс соединений — так называемые соединения включения. Такие соединения образуются при внедрении молекул и атомов в полости цепочечного, слоистого или каркасного кристалла, образованного вторым компонентом. Первые молекулы в соединениях включения называются гостями , вторые — хозяевами . В каркасных структурах, образованных молекулами-жхозяевами , возникают полости, в которых заключены молекулы- гости . Соединения включения (аддукты) с каркасным клеточным скелетом получили название клатратов. Клатратные соединения не следует рассматривать как комплексы, поскольку они образованы за счет ван-дер-ваальсова, а не валентного взаимодействия. Тем не менее их существование уже не позволяет отнести Аг, Кг, Хе (и радон) к инертным газам, так как они все же проявляют определенную склонность к взаимодействию. [c.392]

    Технический продукт окрашен в серый цвет примесью свободцогр углерода. Чистый СаСг представляет собой бесцветные кристаллы, образованные ионами и Сг (рис. Х-5).  [c.299]


Смотреть страницы где упоминается термин Кристаллы образование: [c.129]    [c.39]    [c.90]    [c.136]    [c.360]    [c.330]    [c.75]    [c.524]    [c.312]    [c.334]    [c.242]    [c.485]    [c.161]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.640 , c.649 ]

Курс неорганической химии (1963) -- [ c.443 ]

Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.591 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.633 , c.642 ]

Основные процессы и аппараты химической технологии Часть 2 Издание 2 (1938) -- [ c.369 ]

Курс неорганической химии (1972) -- [ c.396 ]




ПОИСК







© 2025 chem21.info Реклама на сайте