Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Точка кристаллографическая

    Наконец, определяется угол между внешними осями и интересующим кристаллографическим направлением, а также угол й направление поворота кристалла на гониометрической головке для того, чтобы вывести какое-то кристаллографическое направление параллельно ко- [c.228]

    Зная температурную зависимость молярных теплоемкостей кристаллической фазы, расплава п пара, а также энергию (энтальпию) превращения, необходимую для фазового перехода, можно определить общую энергию (общую энтальпию) газа. Нагреем кристалл с точкой кристаллографического превращения (см. 9.1), в которой происходит переход низкотемпературной модификации (а-фазы) в высокотемпературную (Р-фазу), от абсолютного нуля до температуры, превышающей точку кипения. Тогда энергия (энтальпия) будет изме- [c.56]


    Если нагревать любой кристалл с точкой кристаллографического превращения от абсолютного нуля до температуры, превышающей точку кипения, то энтропия изменяется по схеме, которая аналогична схеме, представленной на рис. 3.2. С учетом энтропии превращения при [c.111]

    Зависимость между числом фаз, находящихся в равновесии, и числом степеней свободы можно пояснить на примере диаграммы состояния серы, которая имеет точку кристаллографического превращения. На рис. 8.2 отмечены области существования ромбической, моноклинной, жидкой и парообразной серы. Диаграмма показывает, что могут быть следующие равновесные системы  [c.132]

    Кристаллографическая точка. В теории симметрии объектом исследования является фигура, т. е. некоторая пространственная совокупность точек. Кристаллографическая точка в отличие от математической имеет протяженность, собственную симметрию и ориенти- [c.23]

    Делались также попытки рассмотрения каждого участка кривых у(К) на основе анализа элементарных актов транспорта молекул среды и их взаимодействия с твердой фазой в вершине трещины [294]. Пользуясь этим подходом, можно значительно расширить круг систем, поддающихся количественному описанию. Этому способствовал бы, например, перенос методов, использованных в [287], со стекол на горные породы, с учетом особенностей строения, полярности и прочности химических связей в конкретных минералах [276] и кристаллографических закономерностей разрушения [275]. Что касается активационных барьеров, контролирующих транспортные процессы в воде, содержащей электролиты, то для их оценки с успехом приложимы представления О. Я. Самойлова [295], в соответствии с которыми уже удавалось объяснить различия в действии водных растворов на прочность разнообразных материалов [296]. [c.97]

    Полученные выражения применимы к любой ориентации молекулы относительно приложенного поля. Если исследуется монокристалл, кристаллографические и молекулярные оси которого не совпадают, определить все компоненты тензора СТВ можно так же, как и при расчете д-тен-зора. Система координат, которая приводит к диагональному виду д-тензор, не обязательно совпадает с той системой координат, которая приводит к диагональному виду тензор А, и ни одна из этих систем координат может не быть молекулярной системой координат [176]. Если молекула характеризуется полной симметрией (т. е. в систему включаются все лиганды), тал что у нее есть ось вращения и-норядка, то эта же ось будет диагональной для д и А и она должна совпадать с молекулярной осью z. [c.37]

    Отметим, что х, у и z в кристаллографической записи означают соответственно — X, — у и — Z.) Помещение атома в любую точку (х, у, z) в элементарной ячейке приводит к появлению атомов в семи других перечисленных точках. Аналогично для любой молекулы в элементарной ячейке существует семь других молекул, которые симметрично расположены по отношению к этим семи точкам. Для определения полного содержимого ячейки необходимо только перечислить одну восьмую часть точек. [c.371]


    Монокристалл - кристалл, все части которого относятся к одной и той же микроскопической кристаллографической решетке. [c.401]

    Герман сделал для меня все, что мог. В Вашингтон было отправлено письмо, в котором он горячо одобрял изменения в моих планах. Я тоже написал в Вашингтон, сообщая, что мои нынешние эксперименты по биохимии размножения вирусов, если и интересны, то не слишком. И я намерен оставить традиционную биохимию, так как она, по моему мнению, не может объяснить, как работают гены. Но зато, указывал я, мне ясно, что ключ к генетике — это рентгеновская кристаллография. Я просил разрешения перейти в Кембридж, в лабораторию Перутца, чтобы изучить методику кристаллографических исследований. [c.32]

    Очень расстроенный, я вернулся к своему столу, надеясь все-таки отыскать какую-нибудь зацепку, которая спасла бы идею соединения подобного с подобным. Но было ясно, что новое требование наносило ей смертельный удар. Если поставить атомы водорода в кето-положение, то несоответствие в размерах между пуринами и пиримидинами становилось еще более разительным. Очень трудно было представить себе полинуклеотидный остов, изогнутый до такой степени, чтобы в нем могла поместиться нерегулярная последовательность таких оснований. И даже этот луч надежды погас, когда пришел Фрэнсис. Он тут же сообразил, что структура, в которой подобное соединялось бы с подобным, давала бы кристаллографический период, равный 34 А, лишь в том случае, если бы каждая цепь образовывала спираль с величиной витка 68 А. Но это означало бы, что угол поворота между смежными основаниями составляет 18°, а последняя возня с моделями убедила Фрэнсиса, что такая [c.109]

    ОТ полного упорядочения. На рис. 2.1 даны модельные представления различных точек зрения на природу аморфного состояния. В соответствии с этими представлениями термин аморфный обозначает отсутствие кристаллографических рефлексов. Если же нужно оттенить отсутствие или наличие ближнего порядка в аморфных областях, то на это следует четко указать. При последующем рассмотрении будут учтены элементы структурного порядка. Поступая таким образом, следует помнить, что в любом реальном полимере достаточно упорядоченные области имеют ограниченные размеры и далеки от совершенства, т. е. при объяснении упорядоченной структуры реальных твердых полимеров мы окажемся в какой-то степени перед обратной по отношению к аморфному состоянию ситуацией. [c.28]

    Если конкретная кристаллографическая ось, например ось с, перпендикулярна z, то = —0,5 если она параллельна, то / = 1 наконец, если она ориентирована хаотически по отношению к z, то = 0. В выражениях (3.9-3) и (3.9-4) для одноосного растяжения /цр == /S т. е. /,,р равна степени ориентации главной полимерной цепи. [c.73]

    При наличии текстуры положение всех отражений можно найти, исходя из следующих соображений. Если из большого числа кристалликов мы мысленно выделим один и начнем вращать его вокруг кристаллографической оси, например [Ш], то этот кристаллик даст одно за другим те же пятна, которые получались бы одновременно от всех кристалликов, образующих текстуру. [c.366]

    Соотношение (XXX. 12) получается из соответствующей формулы аналитической геометрии путем замены направляющих косинусов индексами. В кубической сингонии все элементарные ячейки подобны, поэтому взаимное направление нормалей к атомным плоскостям не зависит от размеров ячейки, а только от ориентации соответствующих атомных плоскостей, то есть от кристаллографических индексов кк1). [c.368]

    И в то же время в кристаллографическом, или чисто структурном плане концепция монокристалла играет огромную роль, позволяя систематизировать решетки, рассчитывать теоретические (в известной мере абсолютизированные) свойства кристаллов и-попутно предсказывать их реальные свойства, причем не только механические.. [c.25]

    Для кристаллических веществ, содержащих квадрупольные-ядра, можно наблюдать четкий сигнал ЯКР. Если в исследуемом образце квадрупольные ядра занимают химически или кристаллографически не эквивалентные положения, то спектр ЯКР будег состоять из двух или более сигналов. Так, в случае поливинилхлорида проявляются два сигнала от ядер хлора на частотах 37,. 25 и 38,04 МГц. [c.277]

    Представление о конформационной подвижности активного центра при взаимодействии его с субстратом не противоречит современным рентгеноструктурным данным, которые в литературе начали трактовать так, как если бы химотрипсин имел исключительно жесткое строение [18]. В этой связи следует учесть, что разрешение кристаллографического метода не превышает 2 А. В то же время Кошланд мл. и сотр. [124] (см. также [125]) полагают, что высокая эффективность катализа может быть достигнута лишь в том случае, если точность [c.156]

    Кристаллографические превращения. При некоторых кристаллографических превращениях (см. 9.1) в момент превращения наступает активное состояние, которое достигается во время фазового перехода за счет возникающих при этом напряжений. Вследствие этого могут возникать дислокации, внутренние поверхности или другие дефекты структуры. Повышенная химическая активность в точке кристаллографического превращения лежит в основе эффекта Хедвалла (см. 15.4.4). [c.447]

    С наивысшей поверхностной энергией, т. е. все соответствующие им кристаллографические положения. Ответ положителен, если поверхность представляет идеальную кристаллическую плоскость. Если плоскость не идеальна вследствие несовершенства кристалла или из-за неоднородности атомных слоев, могущих образовывать выступы и впадины, то кристаллографические положения могут отличаться по энергии. Однако можно ожидать, что максимальное отклонение не будет превышать 30% ее абсолютной величины для идеальной поверхности в зависимости от типа связи и от соотношения размеров адсорбированной молекулы и кристаллографического положения. Более серьезное значение имеет неоднородность поверхности, вызываемая загрязнениями. Посторонний атом, адсорбированный поверхностью с большой энергией связи, превращает поверхность в неоднородную и понижает также поверхностную энергию соседних положений. Но посторонний атом не обязательно должен быть адсорбирован поверхностью, он просто может занять место в слое, ближайшем к поверхности кристалла. И в этом случае энергия связи, возникающей между поверхностными атомами. металла и посторонним атомо.м, понижает поверхностную энергию соседних с посторонним атомом положений и поэтому изменяет теплоту адсорбиии атомов водорода вблизи него. Сами адсорбированные атомы водорода оказывают такое же действие они также превращают поверхность в неоднородную. Найдено [3], что теплота адсорбщи молекул водорода при неполном заполнении поверхности никеля равна 30 ООО кал моль. Из этого следует, что энергия связи атома водорода с поверхностью никеля составляет приблизительно 65 ООО кал. Для простоты можно допустить, что эта энергия связи равномерно распределена между тремя или четырьмя соседними атомами металла в зависимости от типа кристаллографического положения. Тогда становится очевидным, что если свободный участок поверхности окружен несколькими другими участками, занятыми адсорбированными атомами водорода, то энергия адсорбции атома водорода на этом свободном участке должна быть гораздо более низкой, чем энергия адсорбции атомов водорода иа участках, соседние положения с которыми также не заняты. Очевидно также, что при этих условиях понижение теплоты адсорбции с увеличивающимся заполнением поверхности сначала должно ма.,10 меняться со степенью заполнения, так как (допуская возможность перемещений адсорбированных атомов из одного положения в другое) эти атомы могут занять достаточно удаленные положения, чтобы ие препятствовать друг другу. [c.200]


    Кристаллографическая точка. В теории симметрии объектом исследования является фигура, т. е. некоторая пространственная совокупность точек. Кристаллографическая точка в отличие от матемети- [c.21]

    Медь(11) образует комплексы различных геометрических структур, электронные спектры которых похожи и магнитная восприимчивость примерно одинакова. Поэтому прийти к каким-то определенным выводам относительно структуры этих соединений можно, только если изучаются твердые соединения, а не их растворы и если можно воспользоваться результатами кристаллографических исследований. Недавние исследования пятикоординационных аддуктов, образуемых различными льюисовыми основаниями и гексафторацетилацетонатом меди (II), привели к созданию метола, позволяющего различить [35] апикальные и жваторпальные изомеры тетрагона.тьной пирамиды. [c.52]

    Еще одной иллюстрацией применимости метода исследования порошкообразных образцов служат результаты сопоставления дифракционных картин В и Г, где В получена при изучении осажденного порошка цианато-комплекса, а Г — при изучении выращенного монокристалла обычным кристаллографическим методом. Отметим, что картины отчетливо различаются. Однако из измерений магнитной восприимчивости следует, что и в том и в другом случае геометрия димерного катиона одна и та же. Упаковка кристаллической решетки в двух указанных случаях различна, хотя с электронной и химической точек зрения это одно и то же вещество. Кристаллизация, которая приводит более чем к одной пространственной группе, встречается не ча- [c.389]

    В. В. Скорчеллетти на основании соответствующих кристаллографических исследований приходит к выводу, что защитное действие благородных атомов может бЕлть приписано тому, что эти атомы оказывают чисто механическое сопротивление проникновению ионов агрессивной среды к пон-атомам неблагородной составляющс . Если размеры частиц агрессивного раствора меньше отверстий, образующихся в результате ухода из решетки атомов неблагородной составляющей, то эти частицы могут продвигаться вглубь если же размеры частиц больше образующихся отверстии, то коррозия определяется етойкоетью благо-гюдного компонента. [c.130]

    С о д е ржание к и с. i о р о д а н железа в окислах резко меняется на границе перехода от одного слоя окалины к другому. Слой закиси железа РеО, достаточно устойчивый при температуре вы-Hie 570° С (кристаллографическое название этого окисла -- вкк тит), при медленном охлаждении окалины распадается ikj уравнению iPeO Ре -1- Ре ,04. Слой зак нсн-окиси железа (Р3О4), так называемый магнетит, устойчив во всем интервале температур от комнатной до точки плав-.пения железа. Окись железа—гематит РегОз — устойчива до 1100° С выше этой температуры она частично диссоциирует и при температуре 1565°С (температура плавления железа) подвержена полной диссоциации. [c.139]

    Римские цифры 1. II, III указывают, соответственно, на то. что каналы в решетке цеолитов расположены в одном, двух нлн трех кристаллографически направле> ВИЯХ (а. Ь или с). [c.396]

    Он заключается в том, что при образовании новой твердой фазы на поверхности твердого вещества (катализатора) элементарные частицы новой фазы кристаллографически закономерно располагаются по отношению к поверхностной решетке . Хемосорбционный процесс можно рассматривать как явление поверхностной однослойной кристаллизации. По мнению П. Д. Данкова, такая кристаллохимическая точка зрения приложима к активным центрам катализаторов. Как уже отмечалось выше, в отличие от пиков Тейлора, П. Д. Данков считает наиболее активными элементами поверхности ненасыщенные элементы ее—впадины— и заполнение их при хемосорбции определяется соответствием конфигураций реагирующих молекул с конфигурацией элементов поверхности и активных мест кристаллохимичсскос соответствие). [c.144]

    ВЛИЯНИЯ на АКТИВНОСТЬ катализатора различных воздействий нетепловой природы, а именно магнитного и электрического полей,, радиацин и ультразвуковых колебаний, приведены в виде графиков на рис, 8—12, Как видно из приведенных данных, указанные формы энергии оказывают большое влияние на каталитическую активность. Во всех описанных случаях были подобраны такие системы, которые исключали возможность изменения кристаллографической структуры твердого тела, и поэтому наложение эффектов в этих опытах не могло иметь места [16]. Изучение зависимости активности катализатора от его магнитного состояния проводились на материалах с ферромагнитными свойствами, поскольку при этом переход через точку Кюри не сопровождается изменением типа решетки. [c.12]

    Активные центры оказывают значительно меньшее влияние на силы, действующие между ионами и поверхностями металлов, которые были рассмотрены в разделе У,3. Центры, активные по отношению к неполярным силам Ван-дер-Ваальса, в данном случае не являются активными. Согласно упрощенной схеме, описанной в разделе У,3, при одной и той же величине равновесного расстояния все кристаллографические плоскости должны притягивать адсорбируемые частицы с одинаковой си-ло11. Однако в дейетвительноети расстояние Го не остается всегда постоянным имеются также и другие менее существенные различия, и можно ожидать, что реальные поверхности будут неоднородны также по отношению к этим адсорбционным силам, хотя и в значительно меньшей степени, чем по отношению к неполярным силам Ван-дер-Ваальса. [c.67]

    Как уже было отмечено в разделе V, работа выхода металла, характеризующая энергию, необходимую для удаления из него электрона, в то же время сродство этого металла к электрону во многих случаях оказывает значительное влияние на величину теплоты хемосорбции. Истинная величина работы выхода различна для разных кристаллографических граней металла. Это положите качественно весьма эффектно демонстрируется эмиссионными изображениями, получаемыми нри помощи мюллеровского электронного проектора. В 1937 г. Мюллер [210], изучая автоэлектронную эмиссию с вольфрамового монокристал-лического острия, наблюдал, что грань 110 обладает наиболее слабой эмиссией электронов. Эмиссия с грани 211 была сильнее, далее следовала грань 100 и, наконец, наиболее сильной эмиссией обладала грань 111 . В настоящее время еще ие решен вопрос о том, действ нтельно ли эти кристаллические грани существуют на поверхности острия н.чи нет [211а, б, 212] Воз- [c.122]

    Целый ряд исследований, посвяпхенных изучению каталитической активности сферических монокристаллов меди [230], указывает иа то, что ориентация кристаллов действительно приводит к различиям в скоростях каталитических реакций. Реакция водорода с кислородом протекает с на-ибольшей скоростью на участках поверхпости медного шарика, параллельньгх кристаллографическим ПЛОСКОС1ЯМ с индексами 111 . Те части сферической поверхности, которые параллельны плоскостям 100 , сильно разрыхляются под влиянием реакции, хотя скорость реакции на них меньше, чем на частях, параллельных плоскостям 111 , которые при этом остаются гладкими [231]. Создается впечатление, что в тех частях поверхности шарика, которые параллельны плоскостям 100 , атомы как водорода, так и кислорода проникают внутрь -металла на некоторую глубину и реагируют там между собой (см. разделы VII, 6 и 7), в то время как в частях, параллельных плоскостям 111 (т. е. граням 111], которые в действительности отсутствуют), быстрее протекающая реакция препятствует проникновению атомов реагирующих веществ внутрь металла. Между теплотами адсорбции и катал-итической активностью не наблюдается прямого параллелизма. [c.128]

    Укажем кратко на различия между современными нредста-влепиями и представлениями, существовавшими в период 1934— 1937 г. В противоположность прежним взглядам мы считаем, что поверхность вольфрама обладает некоторой степенью неоднородности. Форму кривой 2 на рис. 33 нельзя объяснить, если не допустить присутствия участков, где адсорбированные ионы связаны с поверхностью прочнее, чем на остальной части поверхностн. Несомненно, что эта неоднородность обусловлена не примесями или посторонними атомами. Она может быть вызвана наличием различг[ых кристаллографических граней. Во-вторых, мы более не придерживаемся точки зрения, что при более высоких заполнениях атомы адсорбированы рядом с ионами. При низких значениях О весь адсорбированный металл находится на поверхности в виде ионов. При увеличении степени заполнения тип связи изменяется и с некоторого определенного значения О весь металл оказьшается адсорбированным в виде атомов. Под влиянием поля металла происходит поляризация этих атомов. С увеличением заполнения диполь-иые моменты адсорбированных атомов уменьшаются вследствие взаимной поляризации и наблюдается минимум работы выхода, когда приходящееся на один атом уменьшение дипольного момента уже больше не компенсируется увеличением числа диполей на единицу поверхности. [c.139]

    Металлические пленки, получаемые испарением металла и последующей его конденсацией, также захватывают примеси из вакуума . Во время получения этих пленок за счет испарения металла достигается очень высокий вакуум. После этого происходит загрязнение пленки следами газов, выделяющихся из различных частей прибора. Однако благодаря весьма большой величине поверхности пленки могут сохраняться в чистом состоянии значительно дольше, чем нити. Многие пленки, по-видимому, имеют еще и то преимущество, что их поверхность образована преимущественно одной кристаллографической плоскостью. При этом методе приготовления металлических поверхностей создаются необычные условия для процесса кристаллизации [11], и поэтому возможно, что образующаяся кристаллическая грань отличается от граней, возникающих при получении исследуемого металла другими методами. Использование пленок имеет, однако, один недостаток. Вследствие исключительно большой величины поверхности пленок на единицу веса металла [262] они обладают высокой поверхностной энергией. Средняя толщина первичных слоев, из которых состоит вся пленка, очень мала, и поэтому пленки по своим электрическим свойствам отличаются от обычных металлов [263], Во многих случаях у пленок наблюдается некоторое увеличение параметров решетки, достигающее 1—2% [264]. Лишь после сильного спекания их структура приближается к более нормальному состоянию металла. Согласно наблюдениям Миньоле [259], у пленки работа выхода в процессе спекания возрастает, приближаясь к величине, характерной для нормального металла. Вполне возможно, что во время процесса спекания происходит захват примесей. На получение пленок с сильно развитой поверхностью, а следовательно, с предельно открытой структурой большое влияние оказывает скорость испарения и конденсации металла. Пленки вольфрама по своим свойствам несколько более приближаются к нормальным металлам, чем не подвергнутые спеканию никелевые пленки. [c.142]

    По-видимому, термостойкость антрацитов определяется высокой степенью поперечной сшивки отдельных фрагментов структуры, что затрудняет его структурную перестройку до 2200 С. С ростом содержания фюзинитовых групп степень сшивки и соответственно термостойкость возрастают (табл. 3-1). Другой причиной повышенной термостойкости антрадитов является то обстоятельство, что образующиеся при их измельчении частички имеют сильно выраженную изодиаметричность с геометрическими осями, не совпадающими с кристаллографическими, что обусловливает структурную изотропность частичек [3-6]. [c.160]

    На рис. 5-4 показана лауэграмма чешуек графита Шри-Ланка, снятая перпендикулярно их плоскости. Как видно из фотографии, наблюдаются рефлексы, свойственные монокристаллу. Некоторые расширения дифракционных точек свидетельствуют о мозаичной структуре в природном графите. Хорошо модулированный рефлекс (10) и слабая интенсивность линии (002) указывают на резко выраженную кристаллографическую текстуру. Расположение частичек в положении, перпендикулярном рассмотренному выше, дает сильный рефлекс (002). По степени размытости дифрационных точек можно определить размер кристаллитов, входящих в мозаику. Чем больше раз- [c.236]


Смотреть страницы где упоминается термин Точка кристаллографическая: [c.168]    [c.425]    [c.329]    [c.51]    [c.51]    [c.274]    [c.461]    [c.470]    [c.100]    [c.404]    [c.21]    [c.61]    [c.123]    [c.143]    [c.48]    [c.165]   
Введение в физическую химию и кристаллохимию полупроводников (1968) -- [ c.23 , c.34 , c.62 , c.85 ]




ПОИСК







© 2024 chem21.info Реклама на сайте