Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фикобилины роль в фотосинтезе

    Интересен и вопрос о роли вспомогательных пигментов в фотосинтезе. Имеются значительные доказательства правильности той идеи, что эти пигменты, которые состоят из каротиноидов, фикобилинов и хлорофилла Ь, действуют главным образом как дополнительные светопроводы, которые подводят свет к обычному каналу фотосинтеза с помощью хлорофилла а. Эти пигменты захватывают зеленый свет, который плохо поглощается хлорофиллом, и затем передают энергию по экситонному механизму и с помощью резонансного переноса хлорофиллу а. Однако в последние годы были представлены доказательства того, что вспомогательные пигменты также испытывают фотохимическую реакцию, так что в настоящее время этот вопрос никоим образом не может считаться решенным. Более подробная информация по этим вопросам дана в обзоре Френча [97]. [c.132]


    Из внешних факторов, влияющих на движения у растений, особое значение имеет свет. Во-первых, он может вызывать одни движения и препятствовать другим. Кроме того, солнечный свет — это источник биологической энергии. Для понимания процессов, обусловленных влиянием света, необходимо несколько ближе познакомиться с основными теоретическими положениями, касающимися действия света. Предпосылкой для воздействия, то есть для поглощения света, оказывается наличие пигментов (окрашенных веществ). Эти химические соединения, которые можно видеть своими глазами, в природе весьма разнообразны. В мире растений пигменты необходимы для обеспечения не только фотосинтеза, но и многих движений и других процессов. Среди пигментов, которые играют определенную роль при движениях, встречаются как фотосинтетически активные, так и пассивные. Из них фотосинтетически активные подразделяются на три группы хлорофиллы, фикобилины (фикоцианины и фикоэритрины) и каротиноиды (каротины и ксанто-ф иллы). В то время как хлорофиллы и каротиноиды широко распространены в мире растений (грибы представляют собой исключение), фикоцианины и фикоэритрины встречаются в основном у синезеленых и красных водорослей. Хлорофиллы и каротиноиды находятся в специфических элементарных мембранах (тилакоидах), а фикобилины — в фикобили- [c.24]

    Квантовый выход и спектр действия фотосинтеза у красных и синих водорослей. Роль фикобилинов [c.622]

    Как и другие фотобиологические реакции, фотосинтез начинается с поглощения кванта света специализированными хромофорами, которые можно подразделить на три основные группы (табл. 3, 4) хлорофиллы, каротиноиды, фикобилины. Роль этих пигментов как акцепторов света доказывается многочисленными измерениями спектров действия фотосинтеза. [c.49]

    Знание распределения поглощенной световой энергии между различными пигментами очень важно для интерпретации квантового выхода фотосинтеза и в особенности для понимания роли дополнительных пигментов — каротиноидов и фикобилинов. [c.126]

    По сравнению с измерениями Эмерсона и Льюиса, а также Блинкса и Гаксо все более ранние исследования роли фикобилинов при фотосинтезе имеют лишь второстепенное значение. Большинство из этих исследований проведено на красных водорослях и послужило для создания энгельмановской теории дополнительной хроматической адаптации этих водорослей к сине-зеленому свету, преобладающему под водой. Совершенно очевидно, что цветовая адаптация полезна водорослям только в том случае, если свет, поглощенный красными пигментами, может быть использован для фотосинтеза. Вследствие того, что красный и сине-фиолетовый свет поглощается водой, полное [c.628]


    Детали синтеза углеводов и механизмов фотофосфорилирования лежат за пределами настояш,ей книги. Однако мы остановимся здесь на роли в этих процессах пигментов, поскольку они имеют фундаментальное значение в улавливании и утилизации энергии света. Светособирающая роль хлорофилла в фотосинтезе— вероятно, наиболее яркий пример специфических биологических фотофункций природного пигмента. Функционирование каротиноидов и фикобилинов в качестве вспомогательных пигментов также прямо связано с их светопоглощающими свойствами. Другие окрашенные молекулы, в том числе цитохромы и флавопротеины, участвуют в фотосинтезе как часть электронтранспортных систем способность этих соединений поглощать видимый свет не имеет отношения к их функционированию. Ниже будут освещены вопросы о том, как поглощающие свет пигменты расположены в фотосинтетическом аппара- [c.328]

    Вероятность передачи этого рода решающим образом зависит от резонанса между молекулами, обменивающимися энергией, т. е. от взаимного перекрытия полосы флуоресценции донора и полосы поглощения акцептора. Это явление впервые обсуждалось Кальманом и Лондоном в применении к сенсибилизированной флуоресценции в газах. Позднее аналогичные соображения в применении к растворам были развиты Ж. Перреном [8, 10], который использовал классическую электродинамику. Ф. Перрен (И, 16] впервые попытался дать явлению квантово-механическую трактовку. Он использовал этот механизм переноса энергии для объяснения так называемой концентрационной деполяризации флуоресценции в растворе (уменьшение степени поляризации при увеличении концентрации). Впоследствии некоторые другие явления флуоресценции и фотохимии были приписаны обменным процессам этого типа и более совершенное теоретическое толкование было развито в работах Вавилова и его сотрудников [65—67], а также Фёрстером [71, 73, 76] и Арнольдом и Оппенгеймером [91]. Ввиду того, что представления о резонансном переносе энергии могут сыграть важную роль в выяснении фотохимического механизма фотосинтеза (особенно при объяснении возможной роли фикобилинов и каротиноидов в этом процессе), перечисленные работы будут более подробно рассмотрены в гл. XXX и XXXII. Здесь мы упомянем лишь о возможности тушения или возбуждения флуоресценции хлорофилла путем резонансного переноса энергии возбуждения, не требующего контакта молекул. В качестве примеров можно напомнить тушение флуоресценции красителей другими красителями (стр. 188), флуоресценцию [c.167]

    История наших знаний о роли фикобилинов в сенсибилизации фотосинтеза красных и синих водорослей весьма похожа на историю исследования роли каротиноидов в бурых водорослях. Здесь также мы находим догадку (как мы теперь знаем, правильную), сделанную Энгельманом уже в 1883 г., о том, что фикобилины являются активными сенсибилизаторами фотосинтеза, затем серию неопределенных, неубедительных наблюдений и расчетов различных авторов, стремящихся главным образом подтвердить эту догадку, и, наконец, количественные анализы квантового выхода как функции длины волны, выполненные Эмерсоном и Льюисом [96, 97, 101] и Гаксо и Блинксом [ИЗ], которые дали убедительное подтверждение правильности идей Энгельмана. Так же как и в предыдущем разделе, мы рассмотрим сначала наиболее современные и надежные исследования. [c.622]

    Эти неожиданные результаты показывают, что в противоположность всем другим растениям у красных водорослей или, по крайней мере, у некоторых из них прямая сенсибилизация хлорофиллом играет только второстепенную роль и фотосинтез этих водорослей сенсибилизируется прежде всего фикобилинами. Если это так, то кажется мало вероятным, чтобы кванты энергии, поглощенные фикобилинами, передавались хлорофиллу, ибо непонятно, почему непрямое возбуждение хлорофилла должно быть более эффективным, чем возбуждение, обусловленное энергией, поглощенной непосредственно хлорофиллом. Скорее можно предполагать, что эти результаты указывают на самостоятельное действие фикобилинов в качестве сенсибилизаторов фотосинтеза. Возможно даже, что в присутствии фикобилинов хлорофилл является излишним, хотя до сих пор не удавалось обнаружить красных водорослей, не содержащих хлорофилла. [c.627]

    Фотосинтезирующие растения содержат кроме хлорофиллов так называемые дополнительные, вспомогательные, или сопрововдающие пигменты. К ним относятся гсаротиноиды и содержащиеся у некоторых групп водорослей фикобилины. Вопрос о том какова роль этих пигментов в процессе фотосинтеза, участвует ли поглощаемая ими световая энергия в построении органического вещества долгое время оставался неясным. В последние годы изучению роли этих пигментов уделено оольшое внимание и появилось много нового в выяснении их роли в процессе фотосинтеза. [c.136]

    В оолее новых работах В.Б.Евстигнеева с сотрудниками показано, что фикобилины - и фикоцианин, и фикоэритрин, а также выделенные из них хромофорные группы - фикоэритробилин и фи-коцианооилин - способны в определенных условиях сенсибилизировать в модельных опытах на свету некоторые окислительно-восстановительные реакции, в частности, фотовосстановление метилового красного аскорбиновой кислотой. Авторы высказывают предположение о возможном непосредственном участии фикобилинов в фотохимических реакциях фотосинтеза 1п у1то помимо их роли как передатчиков поглощенной ивд энергии хлорофиллу (Евстигнеев, Гаврилова, 1964 Евстигнеев, Бекасова, 1966, 1968, 1969). [c.147]



Смотреть страницы где упоминается термин Фикобилины роль в фотосинтезе: [c.397]    [c.189]    [c.192]    [c.567]    [c.19]    [c.531]    [c.361]    [c.139]    [c.196]    [c.16]   
Фотосинтез 1951 (1951) -- [ c.423 , c.424 , c.429 , c.484 , c.529 , c.566 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте