Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент поглощения распределения

    Определение толщины покрывающего слоя при помощи рентгеновских спектрографов можно провести двумя путями а) непосредственно измерять интенсивность флуоресценции исследуемого внешнего слоя и б) определять способность его к поглощению излучения, возбуждая флуоресценцию нижележащего материала носителя. Так как для большинства слоев коэффициенты поглощения известны, его толщину можно рассчитать непосредственно. В первом методе определяют так называемое локальное распределение элемента в слое, которое при очень тонких слоях (до 150 нм) пропорционально интенсивности флуоресценции. Возможная модификация обоих методов может заключаться в определении толщин сравнением с эталонами. В зависимости от обстоятельств при выборе наиболее целесообразного метода учитывают как размеры и однородность слоя, так и атомные номера элементов покрытия и основы. Другие специальные области применения рассматриваются в литературе [25—32]. [c.218]


    Допплеровское уширение. Существенно большее влияние на уширение спектральных линий оказывает эффект Допплера, т. е. уширение линий вследствие хаотического теплового движения атомов. Допплеровское распределение интенсивности (коэффициента поглощения) по контуру линии подчиняется экспоненциальному закону  [c.140]

    Во многих случаях вопрос о коэффициенте поглощения значительно упрощается, так как часто можно принять, что местные коэффициенты а-), не зависят от длины волны. Тела, у которых ах не зависят от длины волны, называются серыми. В этих случаях средний коэффициент поглощения а не будет зависеть от распределения энергии в спектре, т. е. от температуры источника излучения. Следовательно, а будет зависеть только от температуры поглощающего тела (применимость закона Кирхгофа). [c.300]

    Характеристическое поглощение или излучение атомов, соответствующее переходам атомов из одного состояния в другое, по ряду причин не является строго монохроматическим, а характеризуется некоторым распределением коэффициента поглощения или интенсивности излучения относительно центральной частоты этого перехода (рис. 3.33). Основными параметрами такого распределения служат или I в центре линии и ширина линии на половине ее высоты Ау. Основными факторами уши-рения спектральных линий являются конечное время жизни возбужденных состояний атомов (естественное уширение), тепловое движение атомов относительно оси наблюдения (э ф -фект Допплера), столкновения атомов между собой и с посторонними частицами (эффект Лорентца) и ряд других эффектов. [c.139]

    Трудность анализа порошков обусловлена зависимостью оптической плотности от однородности образца. Джонс [65] показал, что, если в образце 10% составляют прозрачные включения и имеется полоса с истинной оптической плотностью 1, наблюдаемая величина равна 0,775. В этой же работе приведены ошибки и для других отношений площади прозрачной части образца к площади поглощающей. Отмечается также, что эффект быстро возрастает по мере увеличения оптической плотности. Этот эффект назван мозаичным , и его величина зависит от размера частиц, их формы и распределения в образце. По мере роста концентрации частиц область прозрачности (и величина этой ошибки) уменьшается [63]. Другим, часто не учитываемым фактором является зависимость интенсивности полосы кристаллических веществ от размера частиц. Исследование кристаллического твердого хлоранила показало, что при изменении размера частиц от 12 до 160 мкм коэффициент поглощения некоторых полос (в матрице из КВг) может уменьшиться в 4 раза (рис. 6.11). Аналогичный эффект наблюдался на кварце [111]. Наряду с изменением интенсивности может происходить также сдвиг по частоте. Причина этого явления заключается в том, что наблюдаются главным образом поверхностные, а не объемные колебания, и именно они чувствительны к диэлектрической постоянной окружающей среды [94]. Отсюда следует, что неравномерное распределение поглощающих частиц в канале образца из-за их слишком большого размера или изменение распределения частиц по размерам от одного образца к другому приведет к аномальным интенсивностям полос. Обычно рекомендуется, чтобы диаметр частиц был меньше самых коротких длин волн используемого излучения (в большинстве случаев 2 мкм). Если спектры раствора получить не удается, то для проведения продуманных количественных измерений с таблетками из КВг или суспензиями нужно быть уверенным в том, что образец подходящим образом измельчен до требуемой степени дисперсности. [c.265]


    В общем виде скорость звука и коэффициент поглощения выражаются через функцию распределения времен релаксации //(т) следующим образом  [c.231]

    Изменение молекулярно-массового распределения полифениленоксида в процессе синтеза наблюдали [116] по содержанию в полимере концевых гидроксильных групп, определяемых методом ИК-спектроскопии. В ИК-спектрах разбавленных растворов полифениленоксида [0,43% (масс.)] в тетрахлориде углерода наблюдается узкая полоса поглощения ОН-группы при 3615 см Концентрацию концевых ОН-групп полимера рассчитывали при условии, что коэффициенты поглощения, соответствующие полосам поглощения концевых ОН-групп полифениленоксида и 2,6-диметилфенола, приблизительно равны. Молекулярную массу полифениленоксида находили, исходя из условий, что полимер содержит одну концевую гидроксильную группу. [c.142]

    Характеристическое поглощение атомов (как и излучение), соответствующее переходам атомов из одного состояния в другое, по ряду причин не является строго монохроматическим, а характеризуется некоторым распределением коэффициента поглощения (или интенсивности излучения 1 ) относительно центральной частоты Уо этого перехода (рис. 14.40). Основными параметрами этого распределения являются значения ко (или /о) в центре линии и ширины линии на половине ее высоты (Ау). [c.824]

    Количественный анализ твердых образцов сопровождается некоторыми дополнительными трудностями. При анализе порошков велика зависимость оптической плотности от однородности образца, особенно в тех случаях, когда неравномерно распределены поглощающие и непоглощающие его части. Этот эффект называется мозаичным [25], он возрастает по мере увеличения оптической плотности, и его величина зависит от размеров частиц, их формы и распределения в образце. Кроме того, при анализе кристаллических веществ существенно отличие таких колебательных параметров, как коэффициент поглощения и частота для молекул, находящихся на поверхности кристалла и в его объеме [26]. Этот эффект также приводит к зависимости интенсивности и положения полосы от размеров частиц. Обычно рекомендуется, чтобы диаметр частиц был меньше самых коротких длин волн используемого излучения (для области фундаментальных частот — [c.476]

    Второе ограничение уравнения (3.9) связано с допущением, что коэффициенты поглощения и рассеяния (S и К) постоянны по всей толщине слоя. Это допущение не справедливо для матовых и полуматовых красочных пленок, так как в элементарные слои, расположенные вблизи верхней границы, проникает воздух оно не справедливо также и для красочных пленок с избирательным распределением частиц, в которых обычно мелкие пигментные частицы всплывают на поверхность. [c.470]

    С параметрами а = 1,5, 6 = 6, с= 1. Для этого распределения числа частиц по размерам максимум значения коэффициента ослабления наблюдается при мкм. Весьма сильные аномалии в спектральной структуре обусловлены спектральными вариациями значений действительной и мнимой частей комплексного показателя преломления. Так, максимумы в значениях Оа наблюдаются. на длинах волн 3,1 7,15 9 мкм, а минимумы — на Я == = 3,1 6,5 8 14 мкм. Сульфатный аэрозоль обладает сильными полосами поглощения во всей красной области спектра, что и определяет спектральную структуру коэффициента поглощения и объясняет наблюдаемые максимумы значений на длинах волн [c.109]

    Особым способом формирования изображений является томография (изображение сечений). Она развивалась для медицинской рентгеновской диагностики. Измеряется поглощение рентгеновских лучей вдоль многих взаимно пересекающихся направлений в одном из поперечных сечений тела. Для этого упомянутое сечение просвечивается последовательно или одновременно вдоль этих направлений. По результату измерений можно рассчитать распределение коэффициента поглощения по се- [c.311]

    Несмотря на наглядность данного метода, все же контраст наблюдаемой картины недостаточен. Для увеличения контраста используется монохроматическая подсветка через затравку и монокристалл. Изображение выделяется с помощью селективных фильтров. Наряду с контролем диаметра удается получить картину распределения температуры на поверхности монокристалла и расплава, используя для этого передающую камеру высокой спектральной чувствительности в инфракрасном диапазоне. В том случае, если на поверхности расплава образуется оптически непрозрачный слой, то для его просвечивания используются рентгеновские лучи. Полученное при этом изображение проецируется на флюоресцентный экран и после усиления яркости анализируется. Контраст изображения зависит от угловых размеров фокуса рентгеновской трубки и соотношения коэффициентов поглощения кристаллизуемого вещества, а также от состава слоя на поверхности расплава и конструкции нагревательной системы. [c.145]

    Метод тепловой линзы наиболее удобен для исследования прозрачных сред и позволяет измерять коэффициенты поглощения вплоть до 10 . .. 10 см . Он может применяться как непосредственно, так и косвенно, для определения распределения температуры, коэффициентов температуропроводности, скоростей потока газов и тому подобного. При ортогональном расположении основного и пробного лучей отклонение луча тепловой линзой часто называют эффектом миража . [c.546]


    Для обработки жидкости рекомендуют ультразвук малой интенсивности, чтобы амплитуда колебаний пузырьков была малой, а колебания можно было бы считать линейными. Практически с помощью специальной аппаратуры [98] находят значение коэффициентов поглощения (скоростей спадания кривой реверберации), по которым вычисляют плотности распределения числа и размеров пузырьков с радиусом, близким к резонансному для данной частоты, а затем рассчитывают по специальной методике размеры пузырьков, вызывающих погло- [c.172]

    Отношение потока энергии, рассеиваемого или поглощаемого сферической частицей, к потоку, падающему на единицу площади поверхности, называют соответственно сечением рассеяния или сечением поглощения (в сумме — сечением ослабления). Отношение такого сечения к геометрическому сечению (проекции частицы) называют коэффициентом эффективности соответственно поглощения, рассеяния или ослабления, Теория Ми дает выражения для коэффициентов эффективности рассеяния и ослабления в виде сложных функций от отношения ра змера частицы к длине волны излучения и от комплексного показателя преломления сферической частицы относительно окружающей среды. Если излучение распространяется в среде, содержащей в единице объемд определенное количество сферических частиц одинакового состава и одинакового размера, то спектральные,коэффициенты поглощения и рассеяния определяются как произведение, сечений рассеяния или поглощения отдельной частицы на указанное количество частиц. Для нолйдисиерс-нон системы частиц необходимо учесть функцию распределения ио размерам. [c.45]

    Поглощение света имеет избирательный характер. Величина оптической плотности раствора (молярного коэффициента поглощения) имеет различное значение при разных длинах волн. Поэтому для фотометрического анализа важно знать спектр поглощения определяемого вещества, т. е. зависимость поглощения от длины волны. Если отложить на оси абсцисс длину волны в нанометрах, а на оси ординат — молярный коэффициент поглощения (или оптическую плотность раствора О), то получим кривую, показывающую распределение поглощающей способности дан- [c.87]

    В случае электронных излучений, характеризуемых широким распределением по энергиям, например 3-излучения, найдено, что вследствие комбинации ряда факторов логарифм числа непоглощенных электронов оказывается приблизительно линейной функцией от толщины поглотителя (рис. 8, б). Поглощение не может быть выражено при помощи коэффициента поглощения (как в случае электромагнитного излучения), а мол- ет быть охарактеризовано путем использования максимального пробега, [c.36]

    Результаты расчета распределений тепловых потоков приведены на рис. 2. Общее количество поглощенной теплоты приведено для каждой кривой, рассчитанной соответствующим методом. Видно, что топки, рассчитанные при условии, что течеиие стержневое, имеют более высокую эффективность, чем топки, рассчитанные при условии, что поток перемешан и течение газа струйное. Топки со струйным течением имеют самую низкую эффективность вследствие того, что высокотемпературная зона пламени имеет малый объем и, следовательно, представляет собой не очень эффективный излучатель, и эта зона окружена продуктами сгорания со значительно более низкой температурой. Следует отметить, что в расчетах предполагалось, что газ имеет постоянный средний коэффицие1гг поглощения, выбранный таким образом, чтобы учесть излучение газов и сажи. Обычно на практике в пламени содержится в основном сажа, и коэффициент поглощения выше, чем сред 1ий, а значение коэффициента поглощения газов, окружающих пламя, пиже среднего. Это существенно снижает эффективность печей со струйным течением газа. Конечно, локальное излучение от сажи в пламени может быть учтено в зональном методе при условии, что распределение концентрации сажи и ее радиационные свойства известны [14, 15]. [c.120]

    При исследовании беизиноа различ1и>1х нефтей комбинированным методом было определено до 90% углеводородов — алканов, циклоалканов С5 и Се и аренов. Установлены некоторые закономерности в распределении углеводородов в бензине в зависимости от типа нефти. Бензины различных нефтей содержат примерно один и тот же набор углеводородов, однако в неодинаковом количестве, причем 10 углеводородов, присутствующих в бензине в этом используются усредненные значения коэффициентов поглощения для различных веществ. [c.105]

    Этот факт можно объяснить селективностью коэффициента поглощения. Можно говорить о местных коэффициентах для данной длины волны А. Так 1сак распределение энергии в спектре зависит от температуры источника излучения, то и средний коэффициент поглощения должен также зависеть от этой температуры. [c.300]

    Возможны переходы с несвязывающей атомарной орбитали на молекулярную орбиталь с большей энергией переходы и п- о. Полосы п->л -переходе в наблюдаются в ближней УФ и видимой областях спектра и часто называются -полосами. Полосы п а -переходов наблюдаются в дальней, а иногда и в ближней УФ-областях. Переходы п- л являются запрещенными и их интенсивности значительно ниже интенсивностей переходов л я и я уст (коэффициент поглощения для разрешенных переходов 10 и более, для запрещенных — меньше 10 ). В УФ-области в вакууме наблюдаются переходы с орбитали в основном состоянии на одну из орбиталей с очень высокой энергией, приводящие к образованию молекулярных ионов. Метод эмпирической идентиф икадии я->л -и п л -переходов основан на их поведении при растворении вещества в различных растворителях. Для л я -переходов при увеличении полярности растворителя наблюдается (хотя и не всегда) сдвиг /С-полосы поглощения в длинноволновую часть спектра. Исключением является обратный сдвиг Я -полосы поглощения для некоторых ароматических молекул (смещение полосы поглощения в длинноволновую часть спектра называют батохромным сдвигом, в коротковолновую часть — гипсохромным). Для п я -переходов при увеличении полярности растворителя наблюдается гипсохром-ный сдвиг соответствующей -полосы поглощения, причем сдвиг на гораздо большую величину, чем для /С-полос. В табл. 1 показано влияние растворителей на спектр окиси мезитила. Обычный батохромный сдвиг полос, обусловленных я- -л -переходами, вызван взаимодействием с растворителем, которое несколько увеличивает свободу движения электронов в молекуле. Однако при л л -переходах изменения в распределении электронов более значительны, соответственно увеличиваются изменения в расположении ядер. Согласно принципу Франка — Кондона, процесс перехода в новое электронное состояние происходит за 10 с за это время ядра не успевают изменить своего взаимного расположения, поэтому наблюдаемый переход происходит при более коротких длинах волн, когда ядра еще не успели занять своего нового положения. [c.9]

    Наибольшим значениям молярных коэффициентов поглощения для разрешенных переходов соответствуют величины порядка е == 10 . Подобные интенсивные полосы всегда следует относить к синглетным переходам (переходы без изменения направления спина). Основное состояние почти всех органических соединений — син-глетное состояние, и вероятность изменения спина при возбуждении электронов очень мала. Переходы между электронными состояниями с одинаковой симметрией распределения заряда запрещены. Однако вследствие воздействия колебаний ядер распределение электронов в основном и возбужденном состояниях может изменяться. Это приводит к осуществлению слаборазрешенных переходов. Интенсивность полос поглощения, соответствующих запрещенным по симметрии переходам, мала (табл. 5.15). Точно так же запрещены переходы с изменением спина электрона. Тот факт, что, несмотря на эти правила отбора, подобные переходы все же можно наблюдать, объясняется сочетанием собственно синглет-ного и триплетного состояний. Однако переходы, запрещенные по спину, отличаются особенно низкой интенсивностью [58]. [c.230]

    При наличии n компонентов поглощение системы измеряют т раз при п волновых числах, а молярные коэффициенты поглощения предварительно определяют по чистым соединениям. Таким образом, для п неизвестных получают систему уравнений, которые решают относительно искомых концентраций. Так же как во всех подобных непрямых методах, с особой тщательностью следует подбирать оптимальные условия [Де-—> Мах, 2- Сз..., п—>>Min (гл. 2.2). В случае трехкомпонентной смеси целесообразно решать систему уравнений при помощи вычисления определителей (правило Крамера). Если неизвестных больше чем три, этот способ менее удобен, так как возрастают трудности при расчете определителей более высоких порядков кроме того, вследствие неточностей коэффициентов складывается неблагоприятное распределение ошибок. В таких случаях прибегают к специальным способам расчетов [63]. В повседневной практике целесообразно использовать электронную вычислительную технику. Для уменьшения случайной ошибки описано использование системы с большим, чем необходимо, числом уравнений, которые обрабатывают по методу наименьших квадратов [72]. [c.246]

    Коэффициенты распределения при экстрагировании ванадия диизоаллилпирофосфорной кислотой из 0,5 н. соляной кислоты равны для 50 и для 5,5, а из 10 н. соляной кислоты — соответственно 2,8 и 83. Для 560 нм молярный коэффициент поглощения экстракта равен 200, а —670. После экстрагирования из 0,5 и 10 н. соляной кислоты оптические плотности экстрактов в кювете с толщиной слоя 2 см были соответственно 0,61 и 1,61. [c.240]

    Теплообмен в замкнутой системе серых тел с заданными оптико-геометрическими характеристиками описывается системой N алгебраических уравнений (2.195). Электрическое моделирование основано на математической тождественности этой системы и системы алгебраических уравнений, описывающей распределение токов в разветвленной электрической цепи с N узловыми точками (рис. 8.8). Каждая узловая точка связана с остальными точками электрическими проводимостями (величинами, обратными электрическим сопротивлениям) Уц, а с индивидуальным источником питания с потен-. циалами г о —через проводимость ц. Проводимости У а являются электрическими аналогами взаимных поверхностей излучения Нц, а проводимости У а — аналогами оптико-геометрических параметров Нц = —Лг), где Лг — коэффициент поглощения, принимаемый равным коэффициенту теплового излучения 8,, — площадь поверхностй г-го- тела. Электрические потенциалы в узловых точках и,- являются аналогами плотности эффективных потоков излучения Еэфг, а токи в узловых точках 1% — аналогами результирующих тепловых потоков СЗроэг для соответствующих тел. [c.406]

    Таким образом, при линейном распределении температуры существует полоса бесконечной ширины. В действительности отклонение от линейного распределения температуры теперь проявляется в виде некоторой разности , т. е. в виде нескольких интерференционных полос. В качестве следующего шага представим, что ца исследуемое поле наложено дополнительное поле полос (вертикальные полосы). Тогда любое отклонение от линейного распределения показателя преломления (температуры) приводит теперь к деформации вертикальных полос, подобной показанной на фиг. 82. Это свидетельствует о вкладе излучения в теплообмен в жидкости. В жидкостях с высоким коэффициентом поглощения, таких, как вода, метанол, этанол, проианол, этот эффект не обнаружен полосы сохраняются вертикальными при условии, что dnIdT = onst. Прием с наложением поля полос был использован для получения качественного представления о характере распределения темиературы. Для количественных оценок использовались интерферограммы, полученные при настройке интерферометра на полосу бесконечной ширины без компенсации. [c.216]

    А п 2 — атомный вес и атомный номер элемента I соответственно. Параметр поглощения х=ц/рсозесг1з, где х/р — массовый коэффициент поглощения для чистого элемента 1. Параметр а учитывает зависимость поглощения или потерь энергии от ускоряющего напряжения. Фактор (т уменьшается с увеличением энергии возбуждения Ео [122]1 При более высоких ускоряющих напряжениях электроны проникают глубже в образец и путь, на котором происходит поглощение, удлиняется. Это показано на рис. 7.4, где приведено распределение электронов и рентгеновского излучения в меди в зависимости от энергии первичного пучка Ео. Как было показано в гл. 3, при увеличении Ео рентгеновское излучение генерируется глубже в образце. На рис. 7.5 схематически показана геометрия поглощения рентгеновского излучения и зависимость пути Р, на котором происходит поглощение в образце из А1, от энергии первичного пучка Ео и углов выхода г1). Следует заметить, что длина этого пути быстро возрастает с увеличением ускоряющего напряжения и уменьшением угла выхода. Величина /(х) будет достигать единицы [уравнение (7.12)] по мере увеличения а и уменьшения х- Это имеет [c.11]

    В работе [246] оиисан метод трех поправок для анализа углерода, в основе которого лежит обобщенная функция распределения генерированного рентгеновского излучения по глубине ф(рг). В этой работе получили хорошее совпадение при анализе карбидов известного стехиометрического состава при условии, что были только использованы разумные значения массовых коэффициентов поглощения для С/с-излучения. Метод трех поправок (гл. 7), усовершенствованный для анализа легких элементов, был также описан в [118]. [c.161]

    Параметры распределения. удельного коэффициента поглощения разли шых многокомпонентных систем по дасшам волн [c.25]

    Допплеровское уширение. Существенно большее влияние на уширение спектральных линий оказывает эффект Допплера, т. е. утиирение линий вследствие хаотического теплового движения атомов. Как уже отмечалось ранее, это движение описывается распределением Максвелла. Соответственно распределение коэффициента поглощения (интенсивности) по контуру линии подчиняется экспоненциальному закону  [c.825]

    Тем не менее, неопределенность в значениях коэффициентов поглощения, выходов флуоресценции и спектральном распределении первичного излучения, применимость только к гомогенным образцам, приближенность физической модели не позволяют полностью реализовать потенциальные возможности МФП. Однако при aнaJ изe образцов с широко меняющимися содержаниями компонентов он является наиболее гибким, не требует большого числа стандартных образцов состава и во всех случаях допускает автоматизацию трудоемких аналитических процедур. [c.34]

    Колебания молекул могут возникать под действием электромагнитного излучения только в тех случаях, когда они сопровождаются изменением распределения электрических зарядов. Иными словами, колебание активно в инфракрасной области, при условии, что оно сопровождается изменением электрического дипольного момента молекулы. Интенсивность полосы поглощения при частоте у характеризуется величиной бугеровского коэффициента поглощения а , связь которого с дипольным моментом ц записывается в виде [c.431]

    Наиболее соверщенным является метод компьютерной многоракурсной томофафии. При этом объект (при его вращении) многократно с разных направлений просвечивается плоским пучком света. В памяти ЭВМ регистрируются данные о распределении соответствующего оптического параметра (коэффициенты поглощения, люминесценция, показатель преломления и т.д.) для текущей проекции. Затем с помощью известных алгоритмов реконструируют изображение слоя на дисплее. Для высокопреломляющих объектов (лазерные кристаллы, стекла, полупроводники) целесообразно размещение их в иммерсии (жидкость с близким показателем преломления) для уменьщения краевых эффектов, переотражения от поверхностей изделия и т.п. [c.520]

    Чаще всего метод реализуют с помощью импульсного лазера (метод лазерной вспышки, МЛВ). МЛВ применим при следующих допущениях образец теплоизолирован, длительность импульса вспышки Т Т- , где 7V - характерное время распросфанения теплового импульса в материале образца, распределения энергии по сечению лазерного пучка и коэффициента поглощения по поверхности образца однородны, образец однороден (гомогенен) и не меняет своих ТФХ в диапазоне температур нафева. [c.541]

    Как видно, зависимость коэффициента распределения от соотношения Н /УО з в растворе имеет экстремальный характер. При этом максимум экстракции совпадает с минимальной оптической плотностью растворов. В области pH от 4 до 1.5 ванадий в растворах существует в форме катионов и анионов НаУюОаа "- Декаванадат-ионы обладают высоким коэффициентом поглощения, тогда как ион в данной области длин волн почти пе поглощает света [ ]. [c.181]


Смотреть страницы где упоминается термин Коэффициент поглощения распределения: [c.482]    [c.66]    [c.108]    [c.192]    [c.90]    [c.824]    [c.311]    [c.163]    [c.602]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент поглощения

Коэффициент распределения



© 2025 chem21.info Реклама на сайте