Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр поглощения фикобилинов

    Американские ученые Эмерсон и Льюис установили, что-квантовый выход фотосинтеза хлореллы (т. е. количество молекул СОг, которые реагируют на квант поглощенного света при фотосинтезе) начинает падать около 680 нм и достигает нуля около 700 нм, хотя полоса поглощения хлорофилла а кончается лишь около 820 нм. Одиако низкий квантовый выход фотосинтеза в области красного падения можио увеличить и даже довести до нормального уровня одновременным освещением светом более короткой длины волны. Это явление назвали эффектом Эмерсона. Спектр действия данного эффекта параллелен кривой, которая показывает долю поглощения света, приходившуюся в хлорелле на хлорофилл Ь, у диатомовых водорослей— на фукоксантин и хлорофилл с, а у красных и сине-зеленых водорослей — на фикобилины. Очевидно, фотосинтез требует одновременного возбуждения хлорофилла и одного из вспомогательных пигментов. Световая энергия, поглощенная пигментами-спутниками, передается резонансно на хлорофилл а, и эффективность этого переноса определяет также действенность света, поглощенного вспомогательным пигментом, сенсибилизирующим фотосинтез. Таким образом, для эффективного использования световой энергии в фотосинтезе, кроме хлорофилла а, должен активироваться еще и вспомогательный пигмент—хлорофилл Ь, а также фикобилины, каротиноиды. [c.183]


    СПЕКТРЫ ПОГЛОЩЕНИЯ ФИКОБИЛИНОВ [c.73]

    Спектры поглощения фикобилинов наблюдались в живых водорослях, в водных коллоидных экстрактах хромопротеидов и в органических растворах хромофоров. Результаты не вполне отчетливы, так как и фикоцианин и фикоэритрин, повидимому, встречаются в нескольких модификациях, имеющих слегка различную окраску. Эти модификации могут обусловливаться или небольшими вариациями в структуре хромофоров, или ассоциацией одного и того же хромофора с разными белками. [c.73]

    Спектры поглощения фикобилинов [c.79]

    Фикобилины поглощают ультрафиолетовую радиацию и лучи в видимой части спектра. В таблице 27 приведены максимумы поглощения фикобилинов, выделенных из некоторых красных и сине-зеленых водорослей, а на рис.18 - спектры поглощения фикобилинов в видимой части спектра. [c.76]

    Оглядываясь назад, нельзя не восхищаться неизменной правильностью его выводов, полученных с применением таких экспериментальных методов, которые большинство исследователей не решились бы использовать даже дЛя качественных, не говоря уже о количественных, исследований. Энгельман не только пришел к правильному заключению об общем параллелизме между спектром действия фотосинтеза и спектром поглощения хлорофилла, он также ясно понимал влияние оптической плотности исследуемого образца на эти оба спектра. Его уже давно игнорируемые выводы относительно фотосинтетической активности каротиноидов и фикобилинов теперь, т. е. 65 лет спустя, повидимому, находятся на пути к реабилитации. [c.582]

    НЫМИ (порядка 0,09) в зеленом же свете, который поглощается исключительно фикоэритрином, квантовый выход был значительно ниже. В то же время у клеток, выращенных на зеленом свету, у которых отношение хлорофилла к фикобилину было наибольшим, квантовые выходы и в зеленом свете оказались почти такими же высокими, как в красном (фиг. 114). Позднее, однако. Броди и Броди [39] показали, что было бы грубым упрощением пытаться объяснить эти результаты исключительно на основе различий в абсолютном или относительном содержании пигментов. Если клетки выращивать сначала на синем свету, а затем адаптировать их путем облучения зеленым светом в течение 12 ч, то получается спектр квантового выхода, который мало чем отличается от кривой, представленной на фиг. 114 для клеток, выращенных на зеленом свету (кривая /). Последующая реадаптация в результате облучения синим светом в течение 12 ч позволяет вновь получить спектр квантового выхода, характерный для клеток, выращенных на синем свету (фиг. 114, кривая II). В процессе адаптации не наблюдалось изменений спектра поглощения, т. е., по-видимому, не происходило изменений в содержании пигментов. Аналогичные результаты получались и в том случае, если период адаптации сокращался до 2—3 ч. [c.248]


    Сравнение интенсивности полосы фикоцианина, имеющей максимум у 615 мц, с полосой хлорофилла, лежащей у 680 мц в спектре поглощения живых клеток Os illatoria (см. фиг. 71), также заставляет сомневаться в аналитических данных Лемберга. Согласно Лембергу [144], содержание хромопротеидов в водорослях (найденное у другого вида eramium rubrum), имеет порядок 0,5% при 2 /о хромофора в комплексе. Это соответствует содержанию в сухом веществе водоросли всего лишь 0,01°/о фикобилина, тогда как концентрация хлорофилла в красных водорослях обычно имеет порядок 0,1% (см. т. I, табл. 57). Поэтому преобладание полосы фикоцианина над полосой хлорофилла на фиг. 71 приводит к неправдоподобному выводу о том, что молярный коэффициент экстинкции для фикобилинов по меньшей [c.75]

    Фикобилины — растительные желчные пигменты. Фикобилины, встречающиеся у некоторых водорослей, представляют собой вспомогательные фотосинтетические пигменты, которые подобно каротиноидам могут передавать энергию поглощенных квантов света на хлорофилл, расширяя спектр действия фотосинтеза. В видимой области спектра фикобилины имеют один большой максимум поглощения в области 500—600 нм (фиг. 19). [c.45]

    Как и другие фотобиологические реакции, фотосинтез начинается с поглощения кванта света специализированными хромофорами, которые можно подразделить на три основные группы (табл. 3, 4) хлорофиллы, каротиноиды, фикобилины. Роль этих пигментов как акцепторов света доказывается многочисленными измерениями спектров действия фотосинтеза. [c.49]

    Отношение между фикоцианином и фикоэритрином подобно отношению между двумя хлорофиллами или отношению каротина Е каротинолу один из них, согласно формуле, является продуктом окисления другого. Окисленный пигмент (фикоцианин) встречается Б нескольких разновидностях, отличающихся зелено-синим, синим, пурпурно-синим оттенками и напоминает один из разнообразных каротинолов [118—121, 128]. Восстановленный пигмент (фикоэритрин), повидимому, одинаков у красных и синих водорослей. Килин [120], однако, отмечает некоторые отличия во ф-нуоресцен-ции, а позднее и в спектре поглощения [128] фикоэритринов различного происхождения. Установление различных разновидностей фикобилинов осложняется двумя обстоятельствами. Во-первых, многие на вид различные фикоцианины могли иметь примеси различных количеств фикоэритрина и, во-вторых, разница в кривых экстинкции хромопротеидов связана скорее с природой протеинов, а не хромофоров. [c.420]

    Полосы поглощения фикобилинов ясно различимы в спектрах синих и красных водорослей, например на фиг. 67 приблизительно у 550 мц (фикоэритрин) и на фиг. 70 вблизи 625 мц (фикоцианин). По данным Эмерсона и Льюиса [92], максимум фикоцианина сдвинут почти на 6 в сторону коротких волн в водном экстракте клеток (см. фиг. 70 и 97), тогда как пики поглощения других пигментов сохраняют то положение, которое они имеют в живых клетках. Это указывает на то, что в экстракте комплекс цианобилин—белок отщепляется от пигментно-белково-липоидного комплекса, присутствующего в живой клетке. В гл. XV (т. I) уже было показано, что из всех пигментов пластид только фикобилиновые хромопротеиды переходят в истинный коллоидный раствор при экстрагировании водой. [c.115]

    Для Porphyridium усиливающее действие было максимальным при 546 нм, что приблизительно совпадает с максимумом поглощения фикоэритрина — главного пигмента из группы фикобилинов в клетках красных водорослей. Более сложная картина наблюдалась у hlorella, однако и здесь можно было обнаружить приблизительное соответствие со спектром поглощения хлорофилла Ь. Поскольку эффективным оказался как красный, так и синий свет (644 и 480 нм), можно было заключить, что существенна не энергия поглощенного кванта, а само поглощение кванта дополнительным пигментом (в данном случае хлорофиллом Ь). [c.249]

    Это кажущееся несоответствие эффективности фотосинтеза и спектров поглощения агрегированных форм хлорофилла объясняется тем, что спектроскопическая картина не отвечает фактическому распределению энергии между поглощающими частицами. Миграция энергии приводит к ее перераспределению. Существование энергетической лестницы в системе длинноволновых полос поглощения хлорофилла, каротиноидов, фикобилинов, в особенности у агрегатов хлорофилла, создает сток энергии с коротковолновых форм на ничтожно мало поглощающие с широкими длинноволновыми полосами формы. Коротковолновые формы хлорофилла выполняют функцию светосбора и передачи энергии, длинноволновые — акцепторную функцию, промежуточные обладают донорными и акцепторными свойствами. Перекрывание электронно-колебательных уровней коротковолновых и длинноволновых форм хлорофилла способствует стоку энергии [22, 23]. В целом с учетом всех пигментов на конечные длинноволновые формы хлорофилла мигрирует до 80% поглощаемой энергии. Молекулы хлорофилла именно этих конечных длинноволновых форм — реакционных центров фотосинтеза — являются фотохимически активными, [c.19]

    Однако доныне не удалось наблюдать сенсибилизированной флуоресценции (или фосфоресценции), свидетельствующей о такого рода передаче энергии между возбужденной молекулой красителя и молекулой, не обладающей полосами поглощения в области спектров поглощения и флуоресценции красителя. Близость энергетических уровней молекул является одним из условий возможности передачи энергии. В ряде работ установлена и изучена сенсибилизированная флуоресценция хлорофилла в красных и бурых водорослях под влиянием света, поглощенного фикобилинами и фукоксантином. Условием такого рода передачи энергии является расположение спектра поглощения, воспринимающего энергию пигмента, в более красной области спектра но сравнению с пигментом, возбуждаемым светом, при частичном перекрывании их спектров поглощения и флуоресценции обсуждение этих вопросов дано в обзоре А. Н. Теренина [И] и в книге Е. Рабиновича [13]. [c.98]


    У зеленых и эвгленовых водорослей, мхов и некоторых растений кроме хлорофилла а имеется также хлорофилл Ь, содержание которого составляет 20 —25 % содержания хлорофилла а. Это дополнительный пигмент, расширяющий спектр поглощения света. У некоторых групп водорослей, в основном бурых и диатомовых, дополнительным пигментом служит хлорофилл с, а у красных водорослей — хлорофилл с1. В пурпурных бактериях содержатся бактериохлорофиллы аиЬ,аъ зеленых серных бактериях наряду с бактериохлорофиллом а содержатся бактериохлорофиллы с и й . В поглощении световой энергии участвуют и другие сопровождающие пигменты у фотосинтезирующих эукариот это каротиноиды — желтые и оранжевые пигменты полиизопреноидной природы, у цианобактерий и красных водорослей — фикобилины — пигменты с линейной тетрапиррольной структурой (см. главу 5). У галобактерий обнаружен специфичный пигмент — сложный белок бактериородопсин, близкий по [c.418]

    Наиболее вероятно, что в состав фикоэритрина входит мезобилиродин, а в состав фикоцианина — мезоби-ливиолин. Каждая макромолекула фикобилина содержит несколько одинаковых хромофорных группировок. Длинноволновые полосы поглощения фикобилинов расположены в желто-оранжевой области (рис. 11). Судя по поляризационным спектрам флуоресценции, три длинноволновые полосы поглощения фикобилинов относятся к одному электронному переходу. [c.54]

    Сравнение спектров поглощения фикобилииов со спектром, в котором проходит фотосинтез у водорослей (спектр действия), показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и подобпо каротипоидам передают ее на молекулу хлорофилла, после чего опа используется в процессе фотосинтеза. [c.116]

    Перегиб, заметный на длинноволновой стороне полосы, расположенной у 580 мц, указывает на присутствие второго максимума около 630 мц. Вероятно, это максимум второй полосы флуоресценции (О — 1) фикоэритрина, ведущей к колебательному основному состоянию. Первая полоса флуоресценции фикоцианина, соответствующая первой полосе поглощения этого хромопротеида, максимум которой обнаруживается в том же экстракте у 615 мц, лежит у 660 мц, согласно кривой, полученной Френчем [110] посредством вычитания спектра флуоресценции фикоэритрина из спектра флуоресценции необработанного водного экстракта красной водоросли (фиг. 118, Б). Ранее Дере и Фонтэн [101] нашли, что середины полос флуоресценции двух фикобилинов в водном экстракте расположены около 578 и 648 мц. Дере и Раффи обнаружили вторую полосу фикоцианина приблизительно у 728,5 мц. [c.211]

    Фотосинтез высших растений и водорослей in vivo идет во всей области спектра от 420 до 690 нм, хотя интенсивность поглощения света хлорофиллом а сильно понижена в пределах от 450 до 650 нм. То же характерно и для фотосинтезирующих бактерий. Свет в этой пустой для хлорофилла области поглощается ка-ротиноидами, фикобилинами. Далее, судя по относительным интенсивностям поглощения света различными агрегатами хлорофилла а, интенсивно поглощают коротковолновые формы 668, 676, 680, 686 нм, остальные поглощают несравненно меньше. [c.19]

    Наиболее характерным для отдельных фикобилинов являются максимумы поглощения в видимой части спектра. Так. фикоцианин имеет максимум при 615 вм, фикоэритрин - при 565 нм, аллофикоцианин - при 650 нм. [c.76]

    У пурпурных фотосинтезирующих бактерий имеется пигмент бактериохлорофилл — структурный аналог хлорофилла. Этот пигмент поглощает в зеленом и инфракрасном участках спектра, т. е. в тех областях, где высшим зеленым растениям интенсивное поглощение не свойственно. Красные, бурые и сине-зеленые водоросли содержат наряду с хлорофиллом также и большие количества пигментов из группы фикобилинов (фико- [c.115]

    Поэтому все пигменты фотосинтезирующих организмов разделяются на основные (хлорофилл а и бактериохлорофилл а) и дополнительные (каротиноиды, фикобилины и все остальные хлорофиллы). Большой арсенал дополнительных пигментов, перекрывающих своим поглощением практически весь видимый и часть ближнего инфракрасного спектра, позволяет фотосинтетикам активно улавливать падающую на Землю световую радиацию, которая исходит от ближайшего к ней галактического тела — Солнца. [c.55]

    Значение фикобилинов. Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла в оранжевой, желтой и зеленой частях спектра (см. рис. 3.2). Значение такого распределения максимумов поглощения становится понятным, если вспомнить оптические свойства воды, которая поглощает прежде всего длинноволновые лучи. На глубине 34 м в морях и океанах полностью исчезают красные лучи, на глубине 177 м -желтые, на глубине 322 м — зеленые и, наконец, на глубину свыше 500 м не проникают даже синие и фиолетовые лучи. В связи с таким изменением качественного состава света в верхних слоях морей и океанов обитают преимущественно зеленые водоросли, глубже — синезеленые и еще глубже -водоросли с красной окраской. В. Т. Энгельман назвал это явление хроматической комплементарной адаптацией водорослей. По его наблюдениям (1881 —1884), наиболее интенсивная ассимиляция СОг у водорослей с различной окраской соответствует максимумам поглощения света пигментными системами этих водорослей. Русский исследователь Н. М. Гайдуков (1903) экспериментально показал, что если культуру синезеленой водоросли Os illaria san ta выращивать на свету разного спектрального состава, то у нее развивается дополнительная (комплементарная) окраска. При освещении зеленым светом водоросли становятся оранжево-красными, а при дей- [c.74]

    Фикобилины поглощают лучи в зеленой и желтой части солпеч-иого спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495—565 нм, а фикоцианнн — 550— 615 нм. [c.116]


Смотреть страницы где упоминается термин Спектр поглощения фикобилинов: [c.352]    [c.19]    [c.138]    [c.227]    [c.627]    [c.76]    [c.118]    [c.283]    [c.56]    [c.51]    [c.404]    [c.138]    [c.623]    [c.68]    [c.6]    [c.7]   
Фотосинтез Том 2 (1953) -- [ c.73 , c.76 ]




ПОИСК







© 2025 chem21.info Реклама на сайте