Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение история исследований

    По этим причинам идеи Бертолле отступили временно на второй план. Это принесло науке пользу, ибо позволило сосредоточить внимание ученых нй тех объектах, исследование которых вело к открытию закона кратных отношений, к разгадке причин постоянства состава химических соединений. Ответ на этот вопрос дала атомная теория, которая имела свою длинную историю. Но только после создания кислородной теории и учения о химических элементах, после открытия стехиометрических законов развитие химии логически и исторически потребовало развития атомистических представлений о строении вещества. [c.112]


    Этот пример сыграл известную роль в истории исследования ароматических соединений и долгое время приводился в учебниках в качестве иллюстраций определения строения рефрактометрическим путем. После открытия особых свойств сопряженных двойных связей и явления экзальтации совпадение рефракции бензола с аддитивной величиной иногда пытались трактовать и как довод против формулы Кекуле. С современной точки зрения сопоставление молекулярной рефракции бензола и моно-этиленовых углеводородов вообще не дает оснований для заключений о строении бензола, поскольку ароматические соединения содержат особые типы связей, не встречающиеся у этиленовых углеводородов. [c.87]

    История исследования амилаз — одна из старейших в энзимологии. Велика роль изучения амилаз в выяснении молекулярного строения крахмала и близких к нему полисахаридов [60, 64, 114]. Ниже мы рассмотрим способ действия различных амилаз, исходя из рассмотренных выше представлений о химическом строении крахмала. [c.145]

    Установление строения основных н наиболее доступных стероидов — холестерина (I) и холевой кислоты (II) потребовало свыше столетия работы многих поколений химиков и было закончено лишь в 1934 г. Эти исследования представляют одну из самых ярких страниц в истории органической химии. [c.277]

    Этот пример сыграл известную роль в истории исследования ароматических соединений и долгое время приводился в учебниках в качестве иллюстраций определения строения рефрактометрическим путем. После открытия особых свойств, сопряженных двойных связей и явления экзальтации совпадение рефракции бензола с аддитивной величиной иногда [c.139]

    В дальнейшем эта проблема соотношения свойств и строения веществ заняла огромное место в развитии химии, особенно органической химии, которая в XIX в. почти целиком развивалась в плоскости именно этой проблемы. Достаточно только вспомнить историю исследований явления изомерии в связи с этим для дальнейшего развития атомистической теории решающим стал вопрос о взаимном расположении и взаимной связи атомов внутри сложной частицы. [c.173]

    В истории исследований об эволюции человека можно обнаружить две противоположные тенденции. С одной стороны, это позиция тех ученых, которые стремятся подчеркнуть уникальность человека, концентрируя внимание на прерывистости эволюции и отыскивая уникальные человеческие характеристики в ископаемых остатках, дошедших из далеких эпох. С другой стороны, существуют и те, кто видит в приматах зеркальное отражение человека и вследствие этого всячески преуменьшает различия в поведении и строении тела между ними, доказывая недавнее эволюционное расхождение ветвей, ведущих к человеку и его ближайшим родственникам по эволюционному древу. Настоящая книга основывается на этой второй стратегии, но вместе с тем ее автор понимает, что, несмотря на все наблюдения и аргументы, нельзя игнорировать тот факт, что человек— это совершенно особый вид. Трудность поэтому заключается в самом определении уникальности. [c.15]


    За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конц 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [c.185]

    Т> торая половина XIX в. в истории химии была представлена блестящей плеядой прославленных химиков-органиков. Их выдающиеся исследования сыграли огромную роль в разработке синтеза различных классов органических веществ, в развитии и обосновании теории химического строения органических соединений. [c.261]

    Химики XIX в. не в состоянии были ответить на вопрос, в чем суть различий между атомами разных элементов, например меди и иода. Лишь в период 1897—1911 гг. удалось установить, что сами атомы состоят из еще более мелких частиц. Открытие этих частиц и исследование строения атомов —того, каким образом построены атомы разного вида из более мелких частиц, — одна из наиболее интересных страниц истории науки. Более того, знание строения атомов позволило затем провести исключительно успешную систематизацию химических фактов, а это сделало химию более легкой для понимания и усвоения. Величайшую помощь каждому, изучающему химию, окажет прежде всего ясное представление о строении атома. [c.48]

    ГЕОХИМИЯ (от греч. ge-Земля и химия наука о распространенности и миграции хим. элементов в геосферах. Основы Г. разработаны в нач. 20 в. В. И. Вернадским, А. Е. Ферсманом, В. М. Гольдшмидтом и Ф. У. Кларком. Предмет Г. как отрасли знаний сформулировал В. И. Вернадский, назвав ее историей атомов Земли. Совр. Г.-комплекс наук, объединяемых единой методологией и конкретными методами исследований. С одной стороны, Г. широко использует достижения физики и химии, новейшие методы анализа и представления о строении в-ва, с другой-огромный материал, накопленный геол. науками, в частности минералогией, петрографией, наукой о рудных месторождениях. [c.521]

    В первых главах этой книги уже сообщались некоторые сведения о ядерном строении атома, свойствах атомного ядра и его составе. Так, в гл. 4 при обсуждении,строения атома указывалось, какие частицы, входящие в состав атомного ядра, определяют его массу и заряд. Мы уже знаем, что существование изотопов различных элементов обусловлено неодинаковым числом нейтронов в ядрах атомов одного и того же элемента и что история развития теории строения атома тесно связана с исследованием атомных ядер. [c.424]

    Естествен вопрос, что же сдерживало выявление структурных черт, общих для всего класса белков. Объясняется ли длительность поиска случайным стечением обстоятельств и трудностями технического порядка или же имелись субъективные причины и продолжительность и тернистость пройденного пути были неизбежны Ведь если сравнить формулы отмеченных природных соединений, то вряд ли белки покажутся значительно сложнее нуклеиновых кислот или сахаров. Скорее наоборот, тип их химического строения скорее может удивить своей простотой. Проблема белка, как и другие проблемы естествознания принципиального характера, имеет свою судьбу. Помимо субъективного фактора, решение здесь зависит от уровня теоретического и экономического развития фундаментальных наук и объема накопленных знаний, актуальных именно для данной проблемы. Проследим с этой точки зрения историю химических исследований белковых молекул. [c.60]

    Известный американский ученый, дважды лауреат Нобелевской премии Лайнус Полинг в своей книге Общая химия (М. Мир, 1974) пишет, что величайшую помощь всякому изучающему химию прежде всего окажет хорошее знание строения атома. Открытие частиц, составляющих атом, и исследование структуры атомов (а затем и молекул) — одна из наиболее интересных страниц истории науки. Знание электронного и ядерного строения атомов позволило провести исключительно полезную систематизацию химических факторов, что облегчило понимание и изучение химии. [c.19]

    Общая часть (30 часов на V (курсе), в которую входят следующие разделы сведения из истории катализа главные признаки и свойства катализа катализ и термодинамика некоторые понятия из статистической механики катализаторы и принципы их приготовления строение твердого тела неоднородность поверхности катализаторов электронные овой-ства катализаторов катализаторы и менделеевская таблица смещанные катализаторы промоторы яды носители главные методы исследования катализаторов теория промежуточных соединений мультиплетная теория электронные факторы в гетерогенном катализе теория пересыщения и теория ансамблей (читает акад. А. А. Баландин). [c.228]


    История исследований клатратных соединений показывает, что на основе точных анализов можно настолько полно понять их строение, насколько это вообще возможно без непосредственного определения кристаллической структуры. Особый интерес представляют эксперимен Ш Милью 117]. Он попытался получить формильные производные гидрохинона путем совместного нагревания муравьиной кислоты и гидрохинона в запаянной ампуле, но вместо ожидаемых продуктов получил кристаллическое вещество с замечательными свойствами. При растворений в холодной воде или других растворителях из этого продукта выделялась окись углерода, а из раствора можно было выделить гидрохинон. Этот продукт плавился при 170° С с выделением окиси углерода. Но в то же время продукт не являлся простым соединением гидрохинона и окиси углерода, так как содержал некоторое количество муравьиной кислоты, образующей с гидрохиноном клатратное соединение, при разложении которого в условиях 01шта происходило разложение и муравьиной кислоты с выделением окиси углерода и воды. Доказательством образования молекулярного соединения именно с муравьиной кислотой служит также и то, что соединение это нельзя получить нри нагревании смеси муравьиной кислоты и гидрохинона в присутствии водо отнимающего средства, способствующего разложению кислоты. [c.400]

    Как следует из истории исследований кровеподобных субстанций, обладающих способностью переносить кислород, сначала обратили внимание на то, что кислород транспортируется кровью в виде комплексного соединения с железом гемоглобина. Впоследствии в качестве искусственных переносчиков кислорода синтезировали различные хелатные соединения металлов, по строению сходные с ге-мом. Однако, поскольку ни в одном из организмов функция крови не ограничивается только переносом кислорода и, кроме того, полученные соединения были токсичными, практического применения они не получили. Описываемая ниже искусственная кровь, обладаю щая способностью транспортировать кислород, была разработана исходя из совершенно иных идей и представляет собой эмульсию перфторированного соединения. Эти соединения обычно называют перфторуглеродами, однако, поскольку в качестве структурных элементов кроме углерода и фтора в них могут входить азот и кислород, соединениям такого типа соответствует более общее наименование "перфторированные соединения" (ПФС). [c.448]

    Книга состоит из трех частей. В первой части рассмотрены история экспериментальных исследований пространственного строения синтетических полипептидов и белков и складывающиеся на этой основе представления об их молекулярной структурной организации. Особо выделены три события, во многом определивших последующее развитие этой области и становление самой молекулярной биологии. Первые два вызваны появлением в 1951 г. работ Л. Полинга и Р. Кори и в 1959 г. работы У. Козмана, которые сразу же обратили на себя внимание научной общественности и оказали сильное стимулирующее влияние на теоретическое и экспериментальное изучение пространственного строения белков. Третье событие произошло на рубеже 1950—1960-х годов и было связано с расшифровкой Дж. Кендрью и М. Перутцем трехмерных структур первых белковых молекул. Наибольшее внимание в первой части, как и в двух других, уделено анализу современных исследований и перспективам развития. Вторая часть книги посвящена детальному анализу эмпирического подхода к предсказанию вторичных структур и более высоких уровней пространственной организации глобулярных белков. В отдельной главе отмечены перспективы развития этого подхода. В третьей части изложена история исследований механизма свертывания белковой цепи в нативную конформацию в условиях in vitro и in vivo. В последней главе рассмотрена общая теория структурной самоорганизации белка, разработанная на основе нелинейной термодинамики неравновесных процессов. [c.6]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Изучение состава, строения химических реакций и свойств гетероорганических соединений нефти особенно важно для решения такой принципиальной научной проблемы, как генезис нефти. Именно среди гетероорганических компонентов нефти встречаются соединения, в разной степени приближающиеся к соединениям чисто углеводородного характера, которые, вероятно, являются отдельными звеньями длинной цепи химических превращений, соединяющей нефть с органическим веществом растительного и животного происхождения, из которого эта нефть образовалась. Чем больше звеньев в этой цепи удастся расшифровать при помощи современных экспериментальных методов, тем ближе мы подойдем к раскрытию и правильному пониманию геохимической истории многообразных химических превращений в недрах земных от органического вещества растительного и животного происхождения до нефти. Наиболее простые по химическому составу кислород- и серусодержащие соединения являются, но-видимому, одной из последних (если не самой последней) ступенью в ряду этих превращений. Так, содержащиеся в нефтях карбоновые кислоты и сернистые соединения, как показали многочисленные экспериментальные исследования, имеют такую же или очень близкую структуру углеводородной части молекулы, как и углеводороды соответствующих фракций тех же нефтей. [c.303]

    Идея предлагаемого подхода к исследованию спектров веществ состоит в отказе от изучения электронного строения и их тонкой структ])фы. Эта, на первый взгляд, странная мысль привела к поиску и установлению принципиально новьпс закономерностей в спектроскопии. Я не сомневаюсь, что найдены новые закономерности, связывающие оптические, цветовые характеристики и различные свойства материи. Подробно история этого направления изложена в публикации. Полученные нами результаты свидетельствуют о том, что свет, которым наполнен мир от микромира до межзвездных пространств Вселенной, несет информацию обо всех ее свойствах [c.63]

    Этот процесс требует затрат энергил. Ее источником в фотосинтезе является солнечный свет. Кроме этого, необходимым элементом этого процесса является участие катализатора - зеленого пигмента раст ении - хлорофилла. Исследование этого вещества -- одна из драматических страниц истории химии. На этой страище славные имена К.А. Тимирязева. М.С. Цвета, Р. Вильштеттера, Г. Фишера, Р. Вудворда. Роберт Вудворд не только завершил исследования строения хлоро-фи.пиха, но сумел и реализовать его полный синтез  [c.258]

    Исследование состава п строения имеппо этих веществ представляется особенно важным для иопимапия условий их образования и хи-лшческой эволюции в недрах земли па протяжении длинной геологической истории, а также для выбора паиболее правильных и экономически целесообразных направлений их переработки и пснользовапия. [c.302]

    Нельзя не отметить, что, изучая строение неизвестного соединения, исследователь и ныне в сжатом виде, как бы вновь пробегает пройденные историей ступени познания. Он уста- навливает индивидуальный характер вещества, что невозможно без исследования его свойств (температур кипения и плавления, растворимости, хроматографических характеристик, цветных, а иногда и иммунологических реакций). Затем определяется элементарный состав соединения. На этой основе развертываются работы по установлению строения молекулы физическими и химическими методами определяются отдельные функциональные группы и радикалы. На этой стадии соединение нередко изображает- [c.12]

    Однако в строении бензола и его производных оставались нерешенные вопросы, к которым химики и физикохпмики возвращались на протяжении всей истории развития органической химии. Эти вопросы были решены сравнительно недавно путем использования химических, физико-химических методов исследования, а также квантовомеханических расчетов. [c.319]

    Взаимодействие коллоидной химии с молекулярной физикой и рядом теоретических химических дисциплин определило и ее роль в развитии естествознания в целом. Так, открытие и исследование природы и закономерностей броуновского движения, создание прямых методов определения числа Авогадро, развитие теории флуктуаций и их наблюдение привели к экспериментальному подтвержденшо представлений о молекулярном строении вещества, а также об ограниченной приложимости второго начала термодинамики. Коллоидная химия открывает новые подходы к изучению истории земной коры, условий возникновения жизни, механизмов жизнедеятельности. [c.6]

    История С. началась с открытия Ж. Био в 1815 оптической активности орг. соединений в р-рах. Затем Л. Пастер в сер. 1840-х гг. разработал первые хим. и биохим. методы разделения рацематов на энантиомеры и впервые высказал мысль, что оптич. активность в-в-следствие асимметрии молекул. Позже (1874) Я. Вант-Гофф и Ж. Ле Бель построили теорию тетраэдрич. углеродного атома, а в 1893 А. Вернер предложил октаэдрич. строение комплексов металлов. Исследование стереохим. хода р-ций началось с открытия П. Вальденом в 1896 обращения конфигурации [c.433]

    Лигнин, несмотря на длительную историю его исследований, остается наименее изученным высокомолекулярным компонентом древесины. Впервые разделил древесину на две части - углеводную и неуМеводную -еще в 1838 г. французский ученый Пайен. Немного позднее в 1865 г. немецкий химик Шульце назвал неуглеводную часть древесины лигнином, от латинского термина lignum (дерево). В 1897 г. шведский исследователь Класон указал на родство лигнина по химическому строению с ароматическим соединением - конифериловым спиртом, а в 1907 г. высказал мнение, что лигнин является высокомолекулярным веществом. К настоящему времени окончательно доказаны ароматическая природа и полимерный характер лигнина, установлено строение его мономерных звеньев, определены функциональные фуппы и типы связей между звеньями, выяснены основные стадии его биосинтеза. Однако остаются еще не ясными до конца многие вопросы структуры лигнина и механизмов его разнообразных реакций, в том числе таких важнейших, как реакции, происходящие при делигнификации растительных тканей различными способами. [c.362]

    Взаимосвязь различньгх дисциплин во многих случаях можно проиллюстрировать примерами из истории науки. Скажем, периодический закон был открыт химиками, но объяснен на основе теории строения атома физиками тем не менее атомистическая теория строения материи была еще раньше предложена химиками. Периодический закон и периодическая система элементов служат интересам не только химиков, но также физиков и биологов. В качестве второго примера укажем, что процесс фотосинтеза долгое время был предметом изучения ботаников, но химикам удалось вскрыть его механизм, который имеет чисто химическую природу. Это открытие привело к появлению новых областей исследования для биохимиков и даже инженеров, которые ищут пути использования солнечной энергии как дешевого источника, удобного для применения в промышленности. [c.10]

    В качестве первого объекта исследования был выбран один из самых обширных нефтегазоносных бассейнов нашей страны — Северо-Каспийский. Он охватывает приподнятые части востока Русской платформы, в состав которой входят большая часть Волго-Уральской области с примыкающей к ней территорией Нижнего Поволжья, южная часть Предуральского краевого прогиба, северные склоны Южно-Эмбенского поднятия и вала Карпинского с оконтури-вающими их с севера прогибами и Прикаспийская сннеклиза. Упомянутые части бассейна, несмотря на различия в глубинном строении и истории развития, связаны между собой, поскольку они являются элементами единой водонапорной системы. [c.33]

    Нача.уом изучения строения молекулы белка следует считать 1820 г., когда Браконно впервые применил при исследовании белков гидролиз кислотой и выделил из желатины первую аминокислоту — гликоколь. Все проводившиеся до этого времени исследования устанавливали некоторые свойства белков и продуктов их частичного распада, но решающим оказался метод гидролиза. Вслед за Браконно ряд исследователей, пользуясь тем же методом гидролиза, выделили и другие аминокислоты, К 1935 г. было полностью завершено установление качественного состава белков (история открытия отдельных аминокислот приведена в табл. 1). В результате этих работ было выяснено, что все белки [c.436]

    В истории химии белка обращает внимание прежде всего беспрецедентная продолжительность поиска решения структурной задачи Только на установление химического типа белковых молекул потребовалось с момента выделения первого белкового препарата (1728 г) более двухсот лет. На достижение тех же целей, касающихся жиров, углеводов и нуклеиновых кислот, затрачено значительно меньше времени и сил Химические типы первых двух были установлены в 80-90-е годы XIX в Хотя принцип построения молекул нуклеиновых кислот стал известен практически одновременно с белками, выделены они были только в 1859 г (Ф Мишер), а обратили на себя серьезное внимание лишь в 30-е годы XX в (П Левин) Целенаправленное изучение химического строения нуклеиновых кислот как молекулярной первоосновы генетического материала началось после исследования О Эвери в 1944 г и завершилось классическими работами Э Чаргаффа уже в 1961 г, когда был окончательно установлен химический тип молекул ДНК [c.59]

    Исследования, проведенные в этом направлении, показали, что в размещении промышленных скоплений преимущественно нефти или газа в земной коре существуют следующие зональности вертикальная (глубинная), геоструктурная, связанная с особенностями строения и геологической историей развития крупных геоструктурных элементов платформенных и складчатых территорий, и лнтолого-стратиграфическая, обусловленная литолого-фациальными особенностями и палеогеографическими условиями накопления отложений, участвующих в строении продуктивных комплексов [Бакиров А. А., 1973]. [c.170]

    Заметным событием в истории пептидного синтеза является открытие Г. Лейксом в 1906 г. Ы-карбоксиангидридов аминокислот, легко полимеризующихся с образованием полиаминокислот. Несмотря на то, что полиаминокислоты существенно отличакэтся от обычных пептидов, они сыграли важную роль в качестве модельных соединений в исследовании пространственного строения белков. Значение Ы-карбоксиангидридов резко возросло после 1947 г., когда Р. Вудворд и К. Шрамм показали возможность получения с их помощью сополимеров различных аминокислот. В 1966 г. Р. Хирш-ман использовал М-карбоксиангидриды и для регулируемого синтеза биологически активных белков (см. с. 143). [c.126]

    Анализ гуминовых веществ (ГВ) имеет более чем двухсотлетнюю историю, т к его начало обычно связывают с работой Ф Ахарда (1786 г), посвященной химическим исследованиям состава торфа [451 ] Однако до сих пор важнейшие вопросы генезиса и строения ГВ практически не решены Причин, по-видимому, две смещение научных приоритетов в XX веке преимущественно к биоорганическим молекулам в связи с проблемами медицины, биотехнологии, генной инженерии, селекции, сложность изучения их генезиса и строения Если синтез высокомолекулярных органических соединений в живых организмах осуществляется на основе генетического кода и приводит к структурам, большая часть которых может трактоваться как индивидуальные вещества, а нарушение генетической информации — патология, гибель организма и прекращение синтеза, то в основе синтеза ГВ лежат иные принципы и их главное требование — отбор структур, которые в условиях биосферы, главным образом в корнеобитаемых слоях почв, способны приобрести устойчивые свойства и создать необходимые экологические условия для обитания растений и почвонаселяющих микроорганизмов [c.346]


Смотреть страницы где упоминается термин Строение история исследований: [c.584]    [c.355]    [c.402]    [c.441]    [c.54]    [c.190]    [c.306]    [c.6]    [c.258]    [c.228]    [c.260]    [c.61]    [c.197]   
Химия и физика каучука (1947) -- [ c.15 ]




ПОИСК







© 2025 chem21.info Реклама на сайте