Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аэрозоли заряд частиц

    У частиц аэрозолей нет двойного электрического слоя, но в определенных условиях они приобретают электрический заряд. Заряд частиц аэрозолей может появиться в результате трения при их распылении или вследствие адсорбции на поверхности частиц ионов газов, образующихся под действием космического излучения. В отличие от обычных коллоидных растворов, где заряд частиц обусловлен адсорбцией ионов электролита и определяется равновесием между частицей и окружающей средой, у аэрозолей заряд частицы большей частью случаен. В общем все-таки наблюдается закономерность между дисперсностью и величиной заряда заряд частицы аэрозоля тем больше, чем больше ее размеры. [c.350]


    Первым экспериментальным доказательством справедливости закона Эйнштейна — Смолуховского для аэрозолей явилось измерение де Бройлем (1909) скорости движения частиц табачного дыма в горизонтальном электрическом поле и среднего сдвига при броуновском движении. При расчетах он исходил из соотношения Ед = Вй (где Е—напряженность электрического ноля, 7 — заряд частицы). Объединив это соотношение с уравнением (IV. 39), де [c.207]

    В литературе имеются указания, что коагуляция атмосферных аэрозолей может быть вызвана разбрасыванием с самолета высокодисперсного песка, частицы которого несут электрический заряд, по знаку обратный заряду частиц аэрозолей. Другой метод искусственного рассеивания облаков и туманов с помощью коагуляции заключается в распылении в аэрозоль растворов гигроскопических веществ, например, концентрированных растворов хлорида кальция (В. А. Федосеев, 1933 г.). Капельки этой жидкости захватывают капельки воды, укрупняются и выпадают в виде дождя. Для разрушения переохлажденных атмосферных аэрозолей можно применять также дымы иодида серебра или, иодида свинца, частицы которых являются зародышами и вызывают в облаках образование кристалликов льда. [c.362]

    Исследованиями [326] доказано, что основное значение в процессе повышения эффективности пылеуловителей при предварительной электризации аэрозоля имеет величина заряда частиц пыли. Таким образом, произвольное увеличение скорости газа в зарядной камере без изменения ее конструктивных параметров недопустимо, так как может привести к уменьшению заряда частиц. При исследовании удельного заряда аэрозоля, приобретаемого в камерах различного размера, было выявлено, что время пребывания частицы в зоне зарядки влияет на величину заряда значительно меньше, чем напряженность электрического поля. Это существенное обстоятельство дало возможность увеличивать пропускную способность камер путем увеличения скорости хаза в них с одновременным уменьшением зарядного промежутка, т. е. диаметра камеры, вследствие чего возрастала напряженность электрического поля. [c.192]

    Допустим, что частица аэрозоля вначале не имеет заряда и адсорбция на ней ионов, всегда присутствующих в газовой фазе в результате ионизации газов под действием космических или ультрафиолетовых лучей, неспецифична. Такая частица, сталкиваясь с ионом, адсорбирует его и приобретает заряд. Так как концентрация ионов в газе невелика, то эти столкновения редки — интервал времени от одной встречи до другой может измеряться минутами. При новом столкновении адсорбировавшей частицы с ионом заряд частицы может увеличиться или уменьшиться в зависимости от знака заряда и валентности иона, с которым она столкнулась. В результате подобных встреч частица может даже изменить знак заряда или стать нейтральной. Конечно, одновременно происходит и десорбция ионов, захваченных частицей. Таким образом, частица время от времени меняет заряд, но колебания заряда в общем должны происходить около среднего нейтрального состояния. Нетрудно видеть, что колебания заряда частиц аэрозоля имеют характер флуктуаций и являются отражением молекулярно-кинетического движения ионов и частиц. При таких условиях вероятность -приобретения частицей какого-либо заряда определяется выражением  [c.346]


    Расчеты, подтвержденные опытом, показывают, что заряд частиц аэрозоля обычно очень мал и редко превышает элементарный электрический заряд более -чем в I0 раз. Это позволило установить дискретный характер заряда ионов и. измерить абсолютную величину заряда электрона, что и было выполнено Милли-кеном. [c.346]

    Заряд частиц обусловливает явления, происходящие в больших объемах аэрозоля, например в облаках. Опытным путем установлено, что заряд капелек, воды в облаках в общем близок к величине, соответствующей потенциалу порядка 250 мВ. В больших объемах атмосферного аэрозОля происходит разделение частиц по размеру, а следовательно, и по электрическому заряду, вследствие того,, что частицы различных радиусов седиментируют с разной скоростью. В результате этого электронейтральность облака нарушается и в нем возникают мощные электрические поля. При этом нижняя часть облака приобретает обычно отрицательный заряд, а верхняя часть остается положительно заряженной. Расчеты показывают, что в таких условиях напряженность поля Я в облаке составляет в среднем 100 В/см. Однако при значительной полидисперсности капелек облака а также при конвекционных токах, обусловленных ветром, в облаке могут воз никать и гораздо большие напряжения, служащие причиной грозовых явлений Заряд частиц аэрозолей обычно определяют с помощью приемов, аналогич ных методам, используемым для изучения броуновского движения в этих систе мах. С большой точностью измеряют скорость свободной седиментации частицы, аэрозоля. После этого определяют скорость падения или поднятия частицы в наложенном на нее электрическом поле и вычисляют заряд частицы Q, пользуясь, уравнением  [c.347]

    Электрические свойства аэрозолей. Аэрозольные частицы приобретают электрический заряд либо в процессе своего образования, либо находясь во взвешенном состоянии. Образование заряженных частиц наблюдается при разбрызгивании полярных жидкостей. Причина появления заряда у частиц, находящихся во взвешенном состоянии,— захват газовых ионов. [c.189]

    Чтобы электроосаждение было возможно, необходимо, чтобы заряд частиц превышал некоторое предельное значение и чтобы газообразная среда обладала минимальной проводимостью. Эти условия достигаются лишь в электрическом поле высокого напряжения (до 90 000 в). При таком высоком напряжении катод посылает огромное количество электронов, ионизующих воздух. Частицы аэрозоля получают высокий отрицательный заряд и достаточно быстро притягиваются к положительному электроду. Таков, например, принцип действия наиболее распространенного аппарата для электроосаждения дымов — электрофильтра Коттреля, Конструкция электрофильтров разнообразна. Типичный аппарат состоит из ряда труб, одна из которых изображена схематически на рис. 56. [c.150]

    Большой интерес представляют явления, связанные с электрическими зарядами частиц аэрозолей, — движение частиц в электрическом поле и обратное явление — возникновение поля при движении частиц, а также влияние заряда на образование капелек жидкой фазы в процессе конденсации паров. [c.298]

    Расчет по уравнению (XVI. 5) показывает, что заряд частиц аэрозолей весьма мал и составляет всего несколько элементарных зарядов. Так, для г = Ю при Т = 300 °К  [c.299]

    Большой интерес представляют явления, обусловленные электрическим зарядом частиц аэрозолей. [c.291]

    В силу того что диэлектрическая проницаемость воздуха (е 1) много ниже, чем воды (ел 80), для заряжения до одинакового заряда частиц в аэрозолях требуется совершение большей работы, чем для гидрозолей. Вследствие этого средний заряд частиц аэрозолей оказывается ниже, чем в гидрозолях, и сильнее флуктуирует от частицы к частице. В соответствии с теорией флуктуаций, величина среднего заряда определяется соотношением [c.272]

    Заряд частиц обусловливает явления, происходящие в больших объемах аэрозоля, например в облаках. Опытным путем установлено, что заряд капелек воды в облаках в общем близок к величине, соответствующей потенциалу порядка 250 мВ. В больших объемах атмосферного аэрозоля происходит разделение частиц по размеру, а следовательно, и по электрическому заряду, вследствие того что частицы различных радиусов седиментируют с разной скоростью. В результате этого электронейтральность облака нарушается и в нем возникают мощные электрические поля. При этом нижняя часть облака приобретает обычно отрицательный заряд, а верхняя часть остается положительно заряженной. Расчеты показывают, что в таких условиях напряженность поля Н в облаке составляет в среднем 100 В/см. Однако при значительной полидисперсности капелек облака,, а также при конвекционных токах, обусловленных ветром, в облаке могут возникать и гораздо большие напряжения, служащие причиной грозовых явлений. [c.347]

    Заряд частиц аэрозолей обычно определяют с помощью приемов, аналогичных методам, используемым для изучения броуновского движения в этих системах. С большой точностью измеряют скорость свободной седиментации частицы аэрозоля. После этого определяют скорость падения или поднятия частицы в наложенном на нее электрическом поле и вычисляют заряд частицы Q, пользуясь, уравнением  [c.347]


    Специфичность электрических свойств аэрозолей состоит в том, что на частицах не возникает ДЭС, заряд частиц носит случайный характер и мал по величине. При сближении частиц не возникает электростатическое отталкивание и происходит быстрая коагуляция. [c.309]

    Перенос импульса и энергии в облаках частиц разных типов и размеров, детально исследовался [1]. При этом, как отмечалось выше, в исследованиях земной атмосферы интересны именно случаи разреженных суспензий. Касаясь здесь вопросов взаимного влияния частиц облака друг на друга, мы ниже обсудим только появившиеся в последнее время работы, посвященные исследованию механизма передачи электрического заряда частицами друг другу. Между прочим, эти исследования важны и для теоретического обоснования метода электростатического зонда, используемого при исследованиях суспензий. Это явление передачи электрического заряда оказывает влияние на поведение частиц аэрозолей и кристаллов льда, взвешенных в земной атмосфере. [c.182]

    В отличие от коллоидных растворов, где величина заряда частицы обычно обуславливается избирательной адсорбцией ионов электролита и отвечает равновесию между частицей и окружающей средой, у аэрозолей заряд частицы в известной мере случаен и целиком зависит от причин, его вызывающих. По тем же причинам у аэрозолей не существует строгой зависимости между дис- персностью и величиной заряда. Однако в общем все же можно полагать, что заряд частицы аэрозоля тем больше, чем больше ее размеры. Из практики также установлено, что частицы аэрозолей металлов и их окислов обычно несут отрицательный заряд, например РеаОз, MgO, Zn, ZnO, и, наоборот, частицы аэрозолей неметаллов и их окислов заряжены, как правило, положительно (Si02, Р2О5). Положительно заряжены также частицы Na l, угля, крахмала частицы муки несут отрицательный заряд. [c.346]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    Рассмотрим кратко особенности броуновского движения в дисперсных системах с газовой средой. На броуновском движении частиц в аэрозолях весьма сильно сказывается седиментация вследствие малой вязкости и малой плотности газовой среды. В ранних исследованиях это не было учтено, и поэтому значения средних смещений в горизонтальном и вертикальном направлениях не совпадали. Кроме того, благодаря малой,вязкости аэрозолей в них легко возникают конвекционные токи, что также весьма затрудняло изучение броуновского движения в этих системах. Однако позже благодаря применению усовершенствованных методов исследования все эти трудности были преодолены и было установлено,, что броуновское движение в аэрозолях подчиняется тем же закономерностям,, что и в лиозолях. В настоящее время броуновское движение в аэрозолях изучают путем микроскопического наблюдения за седнментйрующими частицами,, которым придают тем или иным способом электрический заряд. Благодаря заряду частицы, опустившиеся на некоторое расстояние вследствие седиментации можно возвратить в исходное положение при наложении соответственно направленного электрического поля и таким образом проводить множество изме- [c.343]

    Ионизируя дисперсионную среду аэрозоля, можно изменять заряд частиц на величину AQ. Весьма существенно, что изменение AQ всегда оказывается кратным, величине элементарного заряда e 4,8-10 i° эл.-ст. ед. Заряд частицы можно-найти, не зная коэффициента В, применив поле с напряжением Яо, при котором подъемная сила полностью компенсирует вес частицы. В этом случае, очевидно, tie = Ua. Заменив е на mg В и а на QHajB, получим уравнение  [c.347]

    Агрегативная устойчивость. Электрический заряд частиц аэрозолей, возникающий обычно в результате адсорбции ионов, как правило, весьма невелик, а иногда практически равен нулю. Всхаег вопрос, могут ли возникать на поверхности частиц аэрозоля молекулярные адсорбционные слои и способны ли такие слои обусловливать агрегативную устойчивость аэрозолей. [c.347]

    Аэрозоли, как правило, агрегативно неустойчивые системы, так как взаимодействие между поверхностями твердых или жидких частиц и газообразной средой практически отсутствует. Частицы аэрозолей могут приобретать электрический заряд, адсорбируя ионы газообразной фазы, которые возникают под действием радиации (космические лучи, гамма-лучи, ультрафиолетовые лучи). Однако величина заряда частиц, как правило, недостаточна, чтобы противодействовать их агрегации. Искусственно можно повысить заряд частиц. В отличие от лиозолей частицы в аэрозолях не имеют диффузного слоя. [c.456]

    Во многих случаях устойчивость аэрозолей увеличивается благодаря присутствию стабилизатора. Стабилизация при этом осуществляется путем приобретения электрического заряда или путем образования защитных слоев на поверхности частиц. Электрический заряд частиц возникает либо в результате адсорбции ионов-из газовой среды или за счет ионизации газа (воздуха) под действием ультрафиолетовых, рентгеновских и космических лучей, а также радиоактивных излучений либо, наконец, за счет трения. Знак заряда пылевых частиц зависит и от химического состава пыли и дыма основные вещества (СаО, ZnO, MgO, РегОз) дают отрицательно заряженные пыли, а кислые (SiOj, РгОб, а также уголь) — положительно заряженные. В отличие от гидрозолей частицы аэрозолей не имеют диффузного слоя ионов (слоя противоионов) кроме того, частицы в аэрозолях могут jie TH paMH4№ie по знаку и величине заряды или быть нейтральными. При этом наибольшую устойчивость проявляют аэрозоли с одноименно заряженными частицами. [c.350]

    Таким образом, заряд частиц аэрозолей случаен, и зависимости между дисперсностью частиц и величи- [c.247]

    У частиц аэрозолей нет двойного электрического слоя, но в определенных условиях они приобретают электрический заряд (электризация частиц). Заряд частиц аэрозолей мджет появиться в результате трения при их распылении или вследствие адсорбции на поверхности частиц газовых ионов, образующихся под действием космических лучей. Экспериментально установлено, что обычно частицы аэрозолей металлов и их оксидов несут отрицательный заряд, частицы неметаллов заряжены положительно. Положительно заряжены частицы аэрозоля крахмала, отрицательно— частицы муки. В отличие от коллоидных систем, в которых заряд частицы определяется избирательной адсорбцией ионов, величину и знак заряда частиц аэрозолей заранее предвидеть нельзя. [c.232]

    Теперь мы имеем возможность рассмотреть влияние ряда факторов на процесс коагуляции аэрозолей в результате диффузии частиц Их можно разделить на две группы К первой относятся те факторы, которые влияют на вероятность столкновения между частицами, например, размер, распределение по размерам и распределение электрических зарядов частиц а также температура и давление газа Ко второй относятся форма и структура частиц и влияние адсорбированных на частицах паров, т е факторы, от которых зависит, слипаются ли диффундирующие частицы при столкновении или нет Влияние элекгрических зарядов частиц и перемещивания на коагуляцию а также акустическая коагуляция для удобства будут рассмотрены отдельно [c.151]


Смотреть страницы где упоминается термин Аэрозоли заряд частиц: [c.346]    [c.353]    [c.364]    [c.150]    [c.273]    [c.331]    [c.364]    [c.92]    [c.95]    [c.163]    [c.239]    [c.248]    [c.69]    [c.44]   
Курс коллоидной химии (1976) -- [ c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Аэрозоль

Заряд аэрозоля

Заряд частицы ВМС

Тепловая коагуляция электрически заряженных частиц и рассеивание аэрозолей

Частицы заряженные



© 2024 chem21.info Реклама на сайте