Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал межфазный

    Современная теория строения двойного электрического слоя основана на представлениях Штерна. Она объединяет две предыдущие теории. Согласно современной теории слой противо ионо состоит из двух частей (рис. П. 13). Одна часть находится в непосредственной близости к межфазной поверхности и образует слои Гельмгольца (адсорбционный слой) толщиной б не более диаметра гидратированных иоиов, его составляющих. Другая часть противоионов находится за слоем Гельмгольца, в диффузной части (диффузный слой Гуи с потенциалом ф ), толщина I которой может быть значительной и зависит от свойств и состава системы. Потенциал в диффузной части двойного электрического слоя не может зависеть линейно от расстояния, так как ионы в нем распределены неравномерно. В соответствии с принятыми представлениями иотенциал в слое Гельмгольца при увеличении расстояния от слоя потенциалопределяющих ионов сни- [c.54]


    Другая причина возникновения межфазных скачков потенциала связана, как отмечалось выше, с взаимным наложением уже существующих на открытых фазах дипольных слоев и с их модификацией. Так, если незаряженный металл привести в контакт с раствором, то поверхностный потенциал на границе металл — раствор обязательно будет равен поверхностному потенциалу [c.28]

    Между металлом и внешним пространством возникает градиент потенциала, стремящийся задержать эмиссию электронов. В конечном счете устанавливается равновесное состояние, при котором, однако, металл притягивает электроны внешнего пространства к своей поверхности, а последние отталкивают электроны металла от поверхности вглубь металла. В итоге в поверхностных слоях металла образуется избыток положительных ионов и создается двойной электрический слой по обе стороны межфазной границы. [c.184]

    Анизотропия вращательной подвижности. Теоретические расчеты и данные машинного моделирования свидетельствуют о том, что молекулы воды вблизи межфазной границы ориента-ционно упорядоченны [2, 599, 600]. Наблюдаемый экспериментально поверхностный скачок потенциала и экспоненциальное отталкивание межфазных границ в тонких пленках также объясняется поляризацией молекул воды в поверхностной области [601, 602]. Вследствие ориентационной анизотропии возникает остаточное расщепление линий ЯМР воды и наблюдаются некоторые особенности ЯМР релаксации воды в гетерогенных системах. [c.234]

    Обращает на себя внимание тот факт, что термодинамическое определение поверхностного натяжения аналогично определению химического потенциала, только поверхностное натяжение характеризует межфазную поверхность, а химический потенциал — растворенное вещество. Обе величины — это частные производные от любого термодинамического потенциала, но в одном случае — по площади иоверхности, в другом — по числу молей вещества. [c.23]

    Рис, VII, 15. Влияние на -потенциал межфазной поверхности стекла следующих электролитов  [c.192]

    Предлагаемая модель принципиально отличается от классического понимания ДЭС, так как на межфазных поверхностях отсутствует термодинамический потенциал в обычном значении этого слова. В этом случае потенциал определяют ионизированные молекулы присадок, более жестко связанные с поверхностью твердой фазы. Компенсирующие ионы обычно связаны с поверхностью твердой фазы, чем и объясняется изменение -потенциала на различном расстоянии от заряженных электродов. [c.31]

    Таким образом, поверхностное натяжение есть частная производная от любого термодинамического потенциала по площади межфазной поверхности при постоянных соответствующих параметрах. [c.22]


    С термодинамической точки зрения, как указывалось ранее, нефтяные эмульсии принадлежат к неустойчивым системам, которые все время стремятся достигнуть состояния равновесия. Агрегативная устойчивость эмульсий измеряется временем их существования и для разных нефтяных эмульсий колеблется от нескольких секунд до многих лет. Установлено [1, 13, 14, 15], что агрегативная устойчивость эмульсии является кинетическим понятием, так как удельная свободная межфазная энергия системы определяется средней кинетической энергией теплового движения, а не минимумом термодинамического потенциала. [c.18]

    В связи с тем, что поверхностный заряд распределяется диффузно в обеих жидких фазах и лишь часть межфазного скачка потенциала приходится на дисперсионную среду, f-потенциал дисперсных капелек, как правило, невелик. С одной стороны,это сильно снижает высоту возникающего потенциального барьера, с другой - затрудняет управление разделением эмульсий в электрических полях. К тому же диаметр капелек в разбавленных эмульсиях близок к размеру коллоидных частиц и составляет, как правило, 10" см. [c.15]

    Отмечено, что величина -потенциала частиц зависит от их местонахождения в электрическом поле, что объясняется электрической неоднородностью межфазной поверхности. [c.31]

    Таким образом, поверхностно-активные анионы, адсорбируясь, не только снижают поверхностное межфазное натяжение, но и делают значение потенциала точки нулевого заряда более отрицательным. Обратная зависимость наблюдается для поверхностноактивных катионов (ТЬ +, А1 + и др.), т. е. поверхностно-активные катионы сдвигают точку нулевого заряда в сторону положительных значений электрического потенциала. [c.53]

    Для межфазной поверхности масло — вода пе существует строгого метода определения г . Сильные электрические двойные слои возникают вследствие адсорбции анионного или катионного поверхностноактивного вещества, что доказывается явлением электрофореза или поверхностного потенциала . Однако последний плохо определим экспериментально и теоретически для поверхности М/В и, конечно, пе равен гр. Из-за отсутствия лучшего метода обычно предполагают, что -потенциал равен г1). Качественно известно, что для стабильности эмульсий требуется -потенциал (любого знака), больший 30 мв (Повис, 1914), но количественное его значение точно не установлено. Поэтому необходимо рассмотреть эту проблему детально. [c.101]

    Параллелизм влияния электролитов на устойчивость коллоида и на -потенциал межфазной границы диспергированное веш ество растворитель выражен особенно отчетливо в случае многовалентных и органических нонов, обладающих способностью иерезаря/кать поверхность раздела. При этом наблюдается резкое снижение устойчивости коллоида прп повышении хсонцентрации электролита, после чего наступает быстрая коагуляция. Однако при больших концентрациях электролита достигается вторая область устойчивости. Это на первый взгляд непонятное явление легко объяснить перезарядкой коллоида. Действительно, при определенных концентрациях электролита коллоид снова приобретает заряд (но уже противоположного знака), который может обеспечить его стабилизацию. Конечно, во всех случаях при достаточно больших концентрациях электролита -потенциал снижается до нуля, а вместе с этим теряется и устойчивость коллоида. [c.136]

    Ртуть широко применяют при электрохимических исследованиях в нормальных элементах Кларка и Вестона обладающих стабильными значениями ЭДС, в электрометрах Липпмана, которые используются для изучения строения двойного электрического слоя, зависимости коэффициента трения от потенциала, межфазного поверхностного натяжения, смачиваемости и других явлений , в ртутносульфатных, ртутно-фосфатных, ртутно-окисных и ртутно-иодистых электродах сравнения , применяемых для измерения электродных потенциалов. [c.7]

    Прежде чем перейти к рассмотрению и сопоставлению величин теплот и энергий гидратации отдельных,ионов, следует подчеркнуть одно обстоятельство, на которое вперкые обратили внимание Ланге и Мищенко (1930). При проведении цикла, лежащего в основе уравнения (2.1), свободные ионы переносятся из газовой фазы в жидкую межфазную границу с локализованным на ней поверхностным скач ком потенциала Каждый моль ионов совершает при этом электрическую работу, равную (где 2,Р — заряд 1 моля г-го [c.51]

    Диаграммы моделей межфазного переноса. Рассмотрим методику построения связных диаграмм, отражающих перенос массы в гетерофазной системе с учетом условий межфазного равновесия компонентов с точки зрения существующих теорий межфазного переноса. Прежде чем переходить к рассмотрению этих вопросов, отметим, что использование понятия химического потенциала в технических расчетах не всегда удобно. Поэтому при дальнейшем изложении вместо химического потенциала будет использоваться другая интенсивная величина псевдоэнергетического характера — концентрация (массовая, объемная, молярная) компонента. [c.149]

    Установлено [15], что агрегативная устойчивость эмульсий является кинетическим понятием, так как удельная свободная межфазная энергия системы определяется средней кинетической энергией теплового движения, а не минимумом термодинамического потенциала. Самопроизвольные процессы в таких системах являются необратимыми и устойчивое состояние соответствует полной коалесценции тобуп и расслоению системы на две объемные фазы с минимальной поверхностью раздела. [c.17]


    Исследованиями П. А. Ребиндера и его школы [15, 20] установлено, что основной причиной устойчивости достаточно концентрированных эмульсий нефти типа В/Н является структурно-механический барьер, образующийся вокруг глобул воды в результате адсорёции на межфазной поверхности эмульгаторов (асфальтенов, смол и щ>.), содержащихся в вефтн. Остальные факторы стабилизации эмульсий (электрокинетичес-кяй потенциал, расклинивающее давление и др.) для нефтяных эмульсий типа В/Н являются второстепенными и существенного значения не имеют. По П. А. Ребиндеру стабилизацию нефтяных эмульсий обеспечивают  [c.18]

    Исследованиями А. Б. Таубмана и С. А. Никитиной с сотр. [39] показано, что нельзя однозначно истолковывать механизм очень большой устойчивости эмульсий прямого типа, образующихся при смешении углеводородов с водой в присутствии неионогенных ПАВ. Адсорбционные слои, образующиеся, например, в растворах ОП-10, сами по себе не обладают сильно выраженной структурно-механической прочностью и значение -потенциала таких эмульсий недостаточно для их стабилизации. Большая устойчивость этих систем обеспечивается прочностью межфазных надмолекулярных структур в форме фазовых пленок ультраэмульсии. [c.32]

    Так, П. И. Лукирский и А. В. Ечистова [95] определили электрический момент молекулы стеариновой кислоты, который оказался равным 0,5 10- СОЗЕ. В. К. Пласкеевым методом измерения скачка межфазного потенциала была исследована миграция молекул граничных слоев жирной кислоты по поверхности полированной пластины. При этом в некоторых случаях отмечали периодические изменения потенциала, которые можно связывать с послойной ориентацией молекул граничного слоя [50]. [c.68]

    Если двойной электрический слой и соответственно электрический потенциал на межфазной границе возникают вслсдствие [c.47]

    Полученное уравнение называется уравнением электродного потенциала Нернста. Приведенный вывод указывает на непосредственную связь между уравнениями Гиббса н Липпмана и показывает, что потенцналопределяющие ионы, адсорбируясь, изменяют поверхностное натяжение. Это эквивалентно увеличению потенциала на межфазной границе. [c.48]

    Уравнения электрокапиллярной кривой названы так потому, что выражаемые ими зависимости экспериментально проверялись Лнпиманом с иомощь о прибора, называемого капиллярным электрометром (рис. П. 9). При исследовании зависимости поверхностного натяжения от потенциала двойного электрического слоя в качестве одной из фаз наиболее удобно применять металлическую ртуть, поверхиостиое натяжение которой легко измерить, например, капиллярным методом, и в то же время удобно изменять межфазный потенциал с помощью внешнего источника тока. Кроме того, ртуть являете. почти идеально поляризуемым электродом, т. е. таким электролом, на котором не протекают электродные реакции при прохол., еини тока, и поэтому изменение заряда электрода вызывает только изменение его потенциала. Это обусловлено тем, что благородные металлы почти совсем не отдают своих ионов в раствор. Малое содержание их в растворе делает невозможным и обратную реакцию (восстановления). [c.50]

    При наличии в растворе поверхностно-активных веществ форма электрокапиллярной кривой может существенно измениться, так как адсорбция ПАВ вызывает дополнительное изменение поверхностного натяжения (кроме действия электрического потенциала). Влияние ПАВ иа электрокапиллярпую кривую зависит от природы этих веществ и их концентрации. Адсорбция на межфазной поверхности зависит также от электрического потенциала, который в соответствии с уравнением Липпмана определяет поверхностное патяжение. [c.52]

    Электрический потенциал и структура двойных электрических слоев мало зависят от размеров частиц. Однако увеличение удельной поверхности в дисперсной системе приводит к повышению концентрации противоионов двойного слоя,что в свою очередь может влиять на многие свойства системы, в том числе и на свойства этого слоя. Если противоионами в двойном электрическом слое являются Н+- или ОН -ионы, то наблюдается так называемый суспензионный эффект, сущность которого состоит в том, что значение рНс суспензии отличается от значения рНф выделенного из нее фильтрата. Количественно суспензионный эффект характеризуется величиной ДрНсэ = рНс—рНф, которая возрастает с увеличением концентрации дисперсной фазы в суспензии, а при постоянной массовой концентрации дисперсной фазы — с увеличением ее дисперсности, т. е. эффект повышается с увеличением межфазной поверхности в суспензии. Значение суспензионного эффекта уменьшается с повышением концеитрацпи электролитов в системе, что еще раз подтверждает указанную причину возникновения этого эффекта. Знак суспензионного эффекта (ДрНсэ) совпадает со знаком заряда поверхности (частиц, мембран). [c.343]

    Специфическая адсорбция может вызвать и уменьшение С-но-тенциала, если специфически адсорбируются противоионы, так как они имеют заряд, противоположный заряду поверхностп. Такая адсорбция может привести к перезарядке поверхностп, т. е. к такому положению, когда потенциал диффузного слоя и -потенциал будут иметь знаки, противоположные знаку межфазного потенциала. Знач тельное влияние на -потенциал оказывает pH среды, поскольку ионы Н+ н ОН обладают высокой адсорбционной способностью. Особо велика роль pH среды в тех случаях, когда а контакте с водным раствором находится амфотерное вещество. Прн изменении кислотности среды можно перезарядить фазы. [c.219]

    Рис. IV. 12 иллюстрирует изменение потенциала ср и скорости движения жидкости и в капиллярах пористого тела с изменением расстояния от межфазной поверхности. Направленное перемещение жидкости, вызванное внешним электрическим полем напряженностью Е, уравновещивается возникающей в ней силой трения. В стационарном состоянии общая сила, действующая на любой сколь угодно малый слой жидкости, равна нулю, и он движется с постоянной скоростью параллельно границе скольн<ения. [c.220]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    Электростатический фактор заключается в уменьщении межфазиоро натяжения вследствие возникновения двойного электрического слоя иа поверхности частиц в соответствии с уравнени" ем Липпмана. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов. Основы электростатической теории устойчивости лиофобных систем излагаются в разделе VI. Б. [c.275]

    Стремление системы к уме п шению поверхностной энергии Гиббса выражается в самопроизвол1,пом уменьшении межфазной поверхности (изменение формы и кривизны, проявление процессов коагуляцип, коалесценции и др.) и уменьшении иоверхностного натяжения (проявление процессов адсорбции, адгезии и смачивания, возникновение электрического потенциала и др.). [c.8]

    Связь между межфазным поверхностным натяжением и электрическим потенциалом поверхности выражается уравнениями Липпмана (1.23) и (1.24). Зависимость поверхностного натяжения от электрического потенциала называют электрокапиллярной кривой. Для межфазной границы ртуть — раствор электрокапиллярные кривые получают обычно с помощью капиллярного электрометра. Используя уравнения Липпмана, по электрокапиллярной кривой можно рассчитать плотность за )яда на поверхности ртути, диф([)ерепциальную емкостр. двойного электрического слоя для определенного состава раствора и определить точку нулевого заряда (т. н.з.), т. е. то значение потенциала, при котором плотность поверхностного заряда qs — 0, а а имеет максимальное значение. [c.27]

    Упомянутые выше соотношения получены для вязко-эластичных параметров сдвига. Можно предположить, что более пригодными для обоснования стабильности являются свойства адсорбционной пленки при расширении. Двумерная сжимаемость и эластичность пленки при расширении выражаются кривыми сила — площадь, однако данных о вязкости при расширении для макромолекул в литературе не содержится. В практике для жесткой макромолекулярной пленкп модуль упругости при расширении сопоставляется с модулем сдвига (Бисвас л Хейдон, 1960, 1962а, 1962Ь). Другие параметры (например, -потенциал и межфазное натя/кение), по-видимому, должны иметь малое влияние на стабильность к коалесценции. [c.112]


Смотреть страницы где упоминается термин Потенциал межфазный: [c.181]    [c.181]    [c.419]    [c.194]    [c.52]    [c.127]    [c.359]    [c.359]    [c.8]    [c.145]    [c.102]    [c.51]    [c.218]    [c.227]    [c.76]   
Курс коллоидной химии 1984 (1984) -- [ c.167 ]

Курс коллоидной химии 1995 (1995) -- [ c.184 ]

Курс коллоидной химии (1984) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние поверхностно-активного вещества на межфазный скачок потенциала

Лиотропный ряд ионов и его значение для межфазных потенциалов

Межфазная граница поверхность потенциал

Межфазные

Межфазные потенциалы (гальвани-иотенциалы)

Межфазные потенциалы на границе проводникдиэлектрик (вакуум)

Межфазные разности потенциалов и двойные слои

Межфазные скачек потенциала

Межфазные скачок потенциала

Межфазных разностей потенциалов определение понятия

Межфазных разностей потенциалов происхождение

Понятие о межфазной разности потенциалов

Разность потенциалов межфазная

Серебра иодид, золь электрокинетический потенциал и общий скачок потенциала межфазной

Штерна и общий скачок потенциала на межфазной границе

Электрокинетический потенциал и общий скачок потенциала иа межфазной поверхности и толщина

Электрокинетический потенциал межфазной поверхности и влияние



© 2025 chem21.info Реклама на сайте