Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиозоль

    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]


    Ранее отмечалось, что суспензии и лиозоли различаются раз мерами частиц. Однако несмотря на то что при одной и той же природе фаз поверхностные свойства отдельных частиц практичен ски одинаковы, различие в размерах частиц дисперсных систем существенно сказывается на многих объемных свойствах этих систем. Как уже указывалось при рассмотрении оптических свойств дисперсных систем, рассеяние света (опалесценция), характерное для золей, с увеличением размера частиц постепенно переходит в отражение света. При одинаковых массовых концентрациях мутность суспензий значительно больше, чем золей. [c.343]

    К системам с жидкой (Ж) дисперсионной средой относятся лиозоль, представляющий собой диспергированное твердое тело, рассредоточенное в объеме жидкости—Т/Ж (коллоидные растворы металлов, например, золота и серебра, взвеси, суспензии и т. п.)  [c.270]

    Жидкость Жидкость Ж/Ж Лиозоль Эмульсии, мази [c.16]

    Системы, имеющие коллоидную степень дисперсности, называют золями, и соответственно в зависимости от агрегатного состояния дисперсной фазы аэрозоль — в случае газов и воздуха и лиозоль — в случае жидкости. [c.16]

    Как можио определить размеры дисперсных частиц или концентрацию их в лиозолях по осмотическому давлению  [c.102]

    В соответствии с выводами, сделанными в предыдущем разделе, лиозоли должны подчиняться тем же уравнениям для осмотического давления, каким следуют истинные растворы. Осмотические свойства заметно проявляются у лиофилизированных золей, в которых наблюдается сольватация частиц. [c.210]

    Из уравнения (IV. 47) видно, что осмотическое давление увеличивается с ростом числа частиц в единице объема даже прн постоянной массе дисперсной фазы (с ростом дисперсности). Если два одинаковых по природе лиозоля имеют разные частичные [c.210]

    Важным отличием аэрозолей от жидких дисперсных систем является отсутствие электронейтральности в системе в целом. Суспензии, эмульсии, лиозоли в макроколичествах не имеют заряда, в них соблюдается закон электронейтральности. Аэрозоль даже в больших количествах может обладать значительным статическим зарядом, а седиментация приводит к его неравномерному распределению в системе, что создает серьезные трудности при рассмотрении Закономерностей изменения свойств аэрозолей. Однако оценочные расчеты, Иапример, напряженности электрического поля в облаках, можно провести с помощью простых соотнощений. [c.228]

    Газ Жидкость г/ж Лиозоль или газовая эмульсия Пены [c.16]

    Лиозоли часто называют истинно коллоидными системами. Размеры частиц дисперсной фазы в ннх не превышают 100 нм. Основное качественное отлнчне лиозолей от микрогетерогеиных систем состоит в том, что частицы золей участвуют в молекулярнокинетическом движении и благодаря этому обладают многими свойствами истинных растворов. [c.186]


    Твердое тело Жидкость т/ж Лиозоль или суспензия Суспензии, коллоидные растворы [c.16]

    Свободно-дисперсные системы проявляют свойства жидкостей обладают текучестью, не оказывают сопротивления сдвиговому усилию. К такому типу систем относятся аэрозоли, лиозоли-змульсии и разбавленные суспензии. [c.17]

    По агрегатному состоянию фаз дисперсные системы классифицируются на 8 основных типов лиозоли (Т —Ж), эмульсии (Ж —Ж), пены (Г —Ж), гели (Ж—Т), сплавы (Т—Т), твердые пены (Г—Т) и две разновидности аэрозолей (Т—Г и Ж—Г), где Т, Ж, Г —твердое, жидкое и газообразное (пар) тела. [c.209]

    Лнозолн делят на дисперсионные, ассоциативные и макромоло-кулярные. Дисперсионные получают методами конденсацин (чаще) либо диспергирования, ассоциативные образуются обратимо при ассоциации молекул в растворах (обычно молекул ПАВ), макромолекулярные являются растворами высокомолекулярных веществ. Лиозоли второй и третьей группы образуются самопроизвольно, как и истинные растворы. [c.186]

    Соотношение (IV. 45) справедливо и для лиозолей. Чтобы перейти к выражению осмотического давления через концентрацию растворенного вещества и упростить соотношение, принимают раствор разбавленным, и тогда оно получает вид, известный под названием закона Вант-Гоффа  [c.210]

    Закон Вант-Гоффа также справедлив для лиозолей, но для них он обычно записывается через частичную концентрацию V (число частнц в единице объема золя, V == сЫл)  [c.210]

    Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензий не участвуют в броуновском движении, они не способны к диффузии и как следствие в отличие от лиозолей суспензии седиментационио неустойчивы и в них практически отсутствует осмотическое давление. Молекулярно-кинетическое движение частиц лиозолей обусловливает энтропийное отталкивание частиц, обеспечивает равномерное их распределение по объему дисперсионной среды. Энтропийный фактор агрегативной устойчивости у суспензий отсутствует, скорость их коагуляции не зависит от броуновского движения (и не может следовать закономерностям теории кинетики коагуляции Смолуховского), а связана в основном со свойствами прослоек дисперсионной среды. Действия других факторов агрегативной устойчивости в суспензиях и лиозолях имеют много общего. [c.343]

    Ультрафнльтрация предназначена для концентрирования лиозолей, растворов полимеров и их очистки от низкомолекулярных веществ. От обычного фильтрования она отличается, главным образом, размером пор мембраны поры мембраны для ультрафильтрации не должны превышать размеров частиц золя. Соответственно перепады давлений при ультрафильтрации достигают [c.243]

    Ю кПа и выше. Кроме того, в результате этого процесса получают более концентрированный лиозоль (суспензия), а не осадок, который образуется при обычном фильтрованни. Механизм ультрафильтрации близок к обычному фильтрованию или просеиванию. [c.243]

    Если константа скорости пептизации значительно больше константы скорости коагуляции (энергия активации пептизации значительно меньше, чем при коагуляции), то в системе будут преобладать мелкие первичные частицы. С увеличением константы скорости коагуляции (уменьшением ее потенциального барьера) число двойных, тройных и т. д. частиц в равновесной системе возрастает. Если коагуляция вызвана взаимодействием между частицами через прослойки среды, то энергия притяжения незначительна, и минимум энергии состемы характеризуется малым отрицательным значением. Поэтому небольшие изменения в системе (колебания pH, ко1щентрацпи электролита), вызывающие увеличение силы отталкивания частиц (уменьшение силы нх притяжения), приводят к пептизации системы иод действием броуновского движения. К системам, способным к подобным превращениям, относится большинство лиозолей (гидрозолей), стабилизированных различными способами, в том числе с помощью электролитов, ПАВ и ВМС. В этом отношении интересны гидрозоли оксида кремния, которые [c.287]

    Роль размера частиц дисперсной фазы в устойчивости растворов полимеров связывает их с другими коллоидными системами. Уже можно утверждать, что для систем с компактными сферическими частицами дисперсной фазы отклонения от идеальности хотя и меньше, чем для систем, содержащих линейные макромолекулы, но они все равно остаются отрицательными. Таким образом, только различие в размерах частиц дисперсной фазы и молекул дисперсионной среды вносит вклад в энтропийный фактор устойчивости коллоидных систем. Этот вклад возрастает для лиозолей, стабилизированных с помощью ПАВ и особенно высокомолекулярных соединений. [c.324]

    Агрегативно устойчивые и неустойчивые суспензии и лиозоли проявляют существенные различия при образовании осадков в результате коагуляции. Они имеют разные седиментацпонные объемы (объемы осадков) и структуры осадков. В агрегативно устойчивых системах оседание частиц происходит медленно и образуется очень плотный осадок. Объясняется это тем, что поверхностные слои препятствуют агрегированию частиц скользя друг по другу, частицы могут перейти в положение с минимальной потенциальной энергией. В агрегативно неустойчивой системе оседание чa т]П происходит значительно быстрее вследствие образования агрегатов. Однако выделяющийся осадок занимает гораздо больший объем, так как частицы сохраняют то случайное взаимное расположение, в котором они оказались при первом же контакте, силы сцепления между ними соизмеримы с их силой тялсести или больше ее. [c.344]


    Яркой особенностью лиозолей является их обратимость — способность к пептизации после коагуляции. Переход коагулята в золь зависит, главным образом, от степени лиофильности золя и от времени, прошедшего с момента коагуляцип. Если коагуляция вызвана уменьшением или ликвидацией того нлн иного фактора устойчивости, то для пептизации, как обратного процесса, требуется восстановление этого фактора. При коагуляции электролитами пептизацию мол<но вызвать промыванием осадка чистым растворителем. Кроме того, молшо увеличить заряд на частицах путем изменения pH среды, уменьшить мелсфазное натяжение, обеспечив адсорбцию ПАВ на частицах, и т. д. Пептизация возмол иа только в том случае, если частицы в коагуляте не находятся в непосредственном контакте, а между ними имеются прослойки дисперсионной среды. Необходимо иметь в виду, что с увеличением времени [c.344]

    Агрегативная устойчивость эмульсий количественно характеризуется скоростью их расслоения, или временем жизни отдельных капель в контакте с другими. Чаще пользуются первой характеристикой. Ее определяют, измеряя высоту (объем) отслоившейся фазы через определенные промежутки времени. Без эмульгатора устойчивость эмульсий минимальна. Известны методы стабилизации эмульсий с помощью ПАВ, ВМС, порошков. Так же как и ири стабилизации лиозолей, стабилизация эмульсий с помощью ПАВ обеспечивается благодаря адсорбции и определенной ориентации молекул ПАВ, что вызывает снижение иоверхностного натяжения. Ориентирование ПАВ в эмульсиях следует правилу уравнивания полярностей Ребиндера полярные группы ПАВ обращены к полярной фазе, а неполярные радикалы — к неполярной фазе. В зависимости от типа ПАВ (ионогенные, неионогенные) капельки эмульсии приобретают соответствующий заряд или на их поверхности возникают адсорбционно-сольватные слои. Очевидно, что электрические и адсорбционно-сольватные слои должны быть образованы со стороны дисперсионной среды. [c.347]

    Приведите примеры практического использования суспензий, лиозолей, эмульсий, пен и аэрозолей. [c.179]

    Пены могут иметь жидкую и твердую дисперсионные среды. Устойчивость, стабилизация и разрушение имеют важное практическое значение для пен с жидкой дисперсионной средой. Как для всех дисперсных систем с такой средой, для пен характерны термодинамические и кинетические факторы устойчивости. Однако в отличие от эмульсий пены, как и лиозоли, нельзя получить путем самопроизвольного диспергирования, так как на границе с газом поверхностное натяжение не может уменьшиться до необходимого значения. По этой же причине пена не может долго существовать без специального стабилизатора (пенообразователя). Только в разбавленных газовых эмульсиях, особенно высокодисперсных, могут какое-то время находиться пузырьки газа, но при соприкосновении они практически мгновенно коалесцнруют. [c.349]

    Основы теории вязкости разбавленных лиозолей (суспензий) были заложены Эйнштейном. Он исходил из гидродинамических уравнений для макроскопических твердых сферических частиц, которые при сдвиге приобретают дополнительное вращательное движение. Рассеяние энергии при этом является причиной возрастания вязкости. Эйнштейном была установлена связь между вязкостью дисперсной системы т] и объемной долей дисперсной фазы ф  [c.370]

    Еще Грэм показал, что коллоидные частицы диффундируют намного медленнее, чем молекулы в истинных растворах. Позже было показано, что эта характерная особенность лиозолей обусловлена большими размерами коллоидных частиц по сравнению с размером обычных молекул. Поэтому определение коэффициентов диффузии лиозолей стало одним из основных методов коллоидной химии при определении размеров частиц дисперсной фазы. [c.38]

    Применительно к лиозолям справедлив осмотический закон Вант-Гоффа (относящи1 ся обычно 4 растворам)  [c.76]

    К лиофильным дисперсным системам относятся также растворы полимеров. Молекулы полимеров имеют размеры, при которых они проявляют свойства отдельной фазы (микрофазы). В то же время растворы полимеров имект свойства истинных растворов, так как молекулы полимеров участвуют в молекулярно-кинетическом движении. Тя-ким образом, растворы полимеров, как и лиозоли вообще, относятся к системам переходным между истинными гетерогенными системами и истинными растворами. [c.131]

    Дисперсные системы с жидкой дисперсионной средой, лиозоли, классифицируют по интенсивности молекулярного взаимодействия на границе раздела фаз. При этом с учетом обратимости или необратимости взаимодействия дисперсной фазы и дисперсионной среды различают соответственно лиофильные илилиофобные дисперсные системы. Дисперсная система считается обратимой, если сухой остаток, полученный после выпаривания дисперсионной среды, самопроизвольно в ней растворяется при повторном контакте, образуя коллоидную систему. [c.17]


Смотреть страницы где упоминается термин Лиозоль: [c.332]    [c.280]    [c.156]    [c.187]    [c.191]    [c.14]    [c.202]    [c.207]    [c.227]    [c.312]    [c.342]    [c.343]    [c.353]    [c.179]    [c.272]   
Курс коллоидной химии 1974 (1974) -- [ c.22 ]

Курс коллоидной химии 1984 (1984) -- [ c.24 ]

Курс коллоидной химии 1995 (1995) -- [ c.26 ]

Физическая и коллоидная химия (1988) -- [ c.154 ]

Курс коллоидной химии (1984) -- [ c.24 ]

Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.17 , c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегация в лиозолях

Лиозоли астабилизация

Лиозоли кривые

Лиозоли пептизации

Лиозоли получение

Лиозоли получение методом конденсации

Лиозоли электропроводность

Особенности коагуляции суспензий и лиозолей

Получение лиозолей методами конденсации и иептизацип и наблюдение некоторых свойств лиозолей

Понятие о методах получения лиозолей



© 2024 chem21.info Реклама на сайте