Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярные вещества

Таблица 2.38. Диэлектрическая проницаемость е различных полярных веществ [20, 84, 85] Таблица 2.38. <a href="/info/471">Диэлектрическая проницаемость</a> е различных полярных веществ [20, 84, 85]

    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]

    С ВЫСОКИМ содержанием 1,4-звеньев, блоксополимеров и статистических сополимеров бутадиена и стирола, обладающих свойствами термоэластопластов. Бутадиен под влиянием литийалкилов в углеводородной среде превращается в полимер, содержащий до 10% 1,2-звеньев и 90% смеси цис-и транс-структур. В присутствии полярных веществ в полимерах бутадиена и изопрена увеличивается доля 1,2- и 3,4-структур. [c.127]

    На некотором малом расстоянии от поверхности полимера, где на раствор влияет силовое поле мембраны, слой, находящийся в термодинамически менее выгодном состоянии, стремится к достижению устойчивого состояния, т. е. к полной или же к максимально возможной компенсации межмолекулярных сил. В данном случае это достигается в результате преимущественной сорбции молекул неполярных веществ на полимере. Следовательно, слой связанной жидкости и в этом случае также состоит как из молекул воды, так и из молекул растворенного вещества. Однако в этом слое, в отличие от связанного слоя водных растворов полярных веществ, компоненты сильно отличаются по подвижности, что обусловлено их свойствами, размером, молекулярным строением, а также природой межмолекулярных сил связи с полимером. При этом менее подвижными становятся молекулы неполярных веществ. [c.220]


    Наблюдаемое (см. рис. 1У-34) для растворов неполярных веществ различие в характере изменения проницаемости объясняется следующим образом. При различной подвижности моЛекул компонентов смеси малоподвижные молекулы неполярного вещества частично блокируют вход в поры, а в порах сужают сечение потока жидкости. Поэтому в данном случае связанный слой проявляет свойства неньютоновских жидкостей [229], вязкость которых зависит от создаваемого напряжения сдвига, и течение этого слоя через поры начинается только при достижении определенного сдвигового напряжения — выше предельного. Поэтому зависимость проницаемости водных растворов полярных веществ от давления не должна экстраполироваться в начало координат, что и подтверждается экспериментальными данными (см. рис. 1У-13).  [c.219]

    Правило подобное растворяется в подобном приводит к тому, что растворители, состоящие из неполярных молекул, перфективны для растворения ионных и даже полярных веществ. Такие растворители, однако, удобны для растворения других неполярных соединений. Например, неполярные чистящие жидкости используются для сухой чистки одежды. Они легко растворяют неполярные загрязнения, пятна жира и т. п. [c.77]

    У полярных веществ по сравнению с неполярными диэлектрическая проницаемость выше (табл. 2.38) их содержание в топливе и определяет в основном различия в величинах е у отдельных марок топлива. Поэтому при глубоком окислении [c.75]

    Вызвать агрегатную кристаллизацию можно не только вводом осадителя, но и добавлением к кристаллизуемому продукту или его раствору высокомолекулярного труднорастворимого вязкого полярного вещества, способного выделяться на кристаллах парафина. [c.76]

    Все данные указывают на то, что реакции Фриделя-Крафтса идут через стадию образования карбоний-ионов, или в некоторых случаях через сильно поляризованные молекулы. Образование таких полярных промежуточных соединений должно идти сравнительно трудно в неполярной среде, часто применяемой для реакций Фриделя—Крафтса. Однако эти слои -комплексов являются сильно полярными веществами, которые должны значительно облегчать образование таких полярных промежуточных соединений. [c.433]

    Постоянство Е ДЛЯ смесей полярных веществ в исследованном интервале температур подтверждает отсутствие заметных изменений в структуре полимера после температурной обработки мембраны. И тем не менее резкое изменение наклона линии для водного раствора толуола обусловлено существенным изменением предэкспоненты Со- Это, по-видимому, происходит по следующим причинам. В соответствии с правилом уравнивания полярностей Ребиндера [221] происходит преимущественная сорбция из раствора на поверхности полимера молекул неполярного компонента и их связывание с гидрофобными частями полимера дисперсионным взаимодействием. Повышение температуры увеличивает вероятность столкновения неполярных молекул и образования [c.185]

    Испускание кванта света молекулой продукта в возбужденном состоянии происходит только в присутствии полярного вещества Y. [c.106]

    В качестве растворителей при получении термоэластопластов используются различные углеводороды и их смеси с добавками полярных веществ. В ароматических углеводородах (например, толуоле) имеет место передача цепи на растворитель [6], что приводит к появлению примеси двухблочных полимеров. Скорость передачи цепи на растворитель возрастает с повышением температуры, что заставляет проводить процесс полимеризации при температуре не выше 35 °С. Кроме того, токсичность ароматических углеводородов снижает их ценность в качестве растворителя. [c.284]

    Совместное влияние формы молекулы и ее полярности помогает объяснить многие из свойств воды, рассмотренные выше. Например, поскольку разноименные заряды притягиваются, противоположные концы соседних молекул слипаются друг с другом. Это приводит к высокой температуре кипения воды. (Для разделения молекул жидкости и образования пара необходимо затратить много тепловой энергии.) Высокое поверхностное натяжение и понижение плотности при кристаллизации льда также может быть объяснено формой молекул воды и их электрической полярностью. В добавление к этому из-за своей полярности молекула воды притягивается к молекулам других полярных веществ. Следовательно, вода способна растворять соединения самой разнообразной структуры. [c.44]

    Ориентационное взаимодействие. В случае двух полярных веществ имеет место ориентационное взаимодействие постоянных диполей. В этом случае вокруг молекул образуется электрическое поле и они стремятся ориентироваться друг относительно друга. Это приводит к их притяжению, в результате чего одно вещество растворяется в другом. Ориентационное взаимодействие молекул двух полярных веществ тем сильнее, чем больше значения их дн-польных моментов. Эти силы взаимодействия являются функцией температуры чем выше температура, тем сильнее тепловое движение молекул и тем труднее им взаимно ориентироваться. Ориентационное взаимодействие обратно пропорционально г (расстоянию между диполями), следовательно, это взаимодействие короткодействующее. , [c.43]


    Смолы — сложная смесь высокомолекулярных продуктов окислительного уплотнения сернистых, азотистых и кислородсодержащих соединений, а также продуктов их взаимодействия. Это — окрашенные полярные вещества, средняя молекулярная масса которых в 1,5—2 раза выше молекулярной массы топлива [5, 7, 25, 26]. [c.18]

    Полярность веществ характеризуется величиной дипольных моментов, значения которых для ряда веществ при 20° приведены в табл. 7 (в абсолютных электростатических единицах). [c.62]

    Преимущественная сорбция неполярных компонентов раствора на мембране, по-видимому, приводит к существенному повышению осмотического давления в граничном слое, несмотря на незначительную их концентрацию в объеме и интенсивное перемешивание. Это проявляется в наличии сдвиговых напряжений при течении таких смесей (рис. 1У-13). При этом сдвиговые напряжения меняются в полном соответствии с изменением гидрофобных свойств растворенных веществ. Аналогичные кривые зависимости С от Р для смесей полярных веществ исходят из начала координат. [c.186]

    Адсорбция молекул, имеющих диполи, квадруполи и л-связи, весьма чувствительна к удалению с поверхности гидроксильных групп. При дегидратации поверхности силикагелей адсорбция воды, спиртов, эфира и других полярных веществ и также азота (молекула азота обладает большим квадрупольным моментом), непредельных и ароматических углеводородов резко уменьшается. На рис. ХУН1, 7 показано уменьшение адсорбции азота и постоянство адсорбции аргона, а также уменьшение теплоты адсорбции пара бензола при дегидратации поверхности силикагеля. [c.500]

    Эмульгаторами обычно являются полярные вещества нефти, такие, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные органические примеси. Установлено, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды, как парафины и церезины нефтей. Тип образующейся эмульсии в значительной степени зависит от свойств эмульгатора эмульгаторы, обладающие гидрофобными свойствами, образуют эмульсию типа В/Н, то есть гидрофобную, а эмульгаторы гидрофильные — гидрофильную эмульсию типа Н/В. Следовательно, эмульгаторы способствуют образованию эмульсии того же типа, что и тип эмульгатора. В промысловой практике чаще все1о образуется гидрофобная эмульсия, так как эмульгаторами в этом случае являются растворимые в нефти смолисто-асфальтеновые вещества, соли органических кислот, а также тонкоизмельченные частицы глины, окислов металлов и др. Эти вещества, адсорбируясь на поверхности раздела нефть—вода, попадают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды. Наоборот, хорошо растворимые в воде и хуже в углеводородах гидрофильные эмульгаторы типа щелочных металлов нефтяных кислот (продукт реакции при щелочной очистке) адсорбируются в поверхностном слое со стороны водной фазы, обволакивают капельки нефти и таким образом способствуют образованию гидрофильной нефтяной эмульсии. При на ичии эмульгаторов обоих тигюв возможно обращение эмульсий, то есть переход из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий. [c.147]

    Изучение свойств надкритического водяного пара обычно проводят путем сопоставления их с соответствующими свойствами воды. В отличие от ранее рассмотренных в этой главе растворителей вода является полярным веществом и характеризуется ажурной молекулярной структурой. Молекулы воды в каркасе связаны водородными связями, в среднем с четырьмя ближайшими к ней соседями. При повышении температуры до комнат- [c.19]

    Поверхностное натяжение сильно полярных жидкостей (например, воды) уменьшается при растворении в них менее полярных веществ, обладающих меньшим поверхностным натяжением (например, спирта). Две жидкости, полярности которых сильно отличаются, смешиваются плохо. Межфазовое натяжение на поверхности раздела таких систем, как бензол — вода, имеет приблизительно такую же величину, что и для чистых жидкостей (73 дин/см для воды, 29 дин/см для бензола и 33 дин1см на поверхности раздела бензол — вода). [c.332]

    Значительно реже, чем ТСХ, используется в нефтяном анализе хроматография на бумаге. Имеются лишь редкие сообщения о ее использовании для разделения нефтяных кислот, аминов, аминокислот, фенолов и других полярных веществ [157, 158], хотя в исс.тедованиях биохимических объектов этот метод приносит неоценимую пользу. [c.20]

    Из сказанного ясно, что полярные вещества должны обладать более сильным притяжением между молекулами, более высокими температурами кипения, большей теплотой испарения, чем вещества неполярные со слабо поляризуемыми молекулами, так как полярность молекул вызывает дополнительное взаимное притяжение между молекулами. [c.88]

    Для более точного вычисления дипольного момента необходимо определяпз поляризацию, особенно у полярных веществ, в разбавленных растворах. Это исключает междипольное взаимодействие между полярными молекулами. В этом случае удобно воспользоваться удельными поляризациями [c.86]

    Для выбора разделяющих агентов на основании представлений о связи между полярностью молекул и характером отклонений от идеального поведения в образуемых ими системах, последние было предложено [20] разделять на следующие группы 1) высокополярные, 2) неполярные, 3) один компонент полярный, другой неполярный и 4) оба компонента с умеренной полярностью. К первой группе относятся, например, системы ацетон—метиловый спирт, вода—уксусная кислота и вода—этиловый спирт. Для первой из этих систем подходящими разделяющими агентами являются, например, дихлорметан [51] — неполярное вещество и вода [52], имеющая резко выраженную полярность. Разделение смесей уксусной кислоты и воды облегчается при проведении ректификации в присутствии таких полярных веществ, как эфиры уксусной кислоты или неполярных углеводородов и их хлорпроизводных [53]. Разделяющими агентами для системы вода—этиловый спирт являются неполярное вещество — бензол [54], — а также полярные вещества — высшие жирные спирты, например амиловый [55] или фенол [56]. [c.62]

    На основе описанных явлений сформулированы обобщения качественного характера, определяющие растворимость. Вещества с различной полярностью плохо растворяются друг в друге полярные вещества часто плохо растворяются в неполярных растворителях, как и неполярные вещества в полярных растворителях. Равнополярные вещества хорошо растворяются друг в друге. Так например, неполярные углеводороды СЗо и СС14 плохо растворяются в воде и спиртах—полярных соединениях. Полярные же вещества, например электролиты, хорошо растворяются в воде и спиртах и [c.12]

    Примерами систем второй группы являются различные смеси углеводородов. Для них в качестве разделяющих агентов используются полярные вещества, например спирты (жирные и фенол), кетоны (ацетон) и амины (анилин). [c.62]

    С идеями Долецалека в значительной мере связаны попытки предсказания поведения систем, образованных нёнолярным растворителем и полярными веществами — членами одного гомологического ряда, базирующиеся на рассмотрении изменения степени ассоциации полярного компонента в растворе [48—50]. [c.60]

    Для выбора разделяющего агента может быть рекомендован следующий путь. Прежде всего нужно рассмотреть имеющиеся данные о равновесии между жидкостью и паром [31], об азеотропных смесях [45] и растворимости [42, 43] в системах, образованных компонентами заданной смеси или их гомологами и различными веществами. Такое рассмотрение часто позволяет выявить критерии сравнительной оценки степени неидеальности в системах, образованных рядами соединений, представляющий ми интерес в рассматриваемом конкретном случае. Таким путем были установлены некоторые важные в практическом отношении закономерности, например, что полярные вещества в наибольшей степени увеличивают относительную летучесть углеводородов с наибольшим отношением атомов Н/С в молекуле. Если соответствующие данные о свойствах растворов отсутствуют или их недостаточно, то, руководствуясь представлениями [c.71]

    Наиболее вероятный механизм действия активаторов [27] заключается в том, что, являясь полярными веществами, они способствуют уменьшению межмолекулярных сил взаимодействия молекул твердых и жидких углеводородов. При этом твердые углеводороды высвобождаются из раствора, что благоприятствует образованию спиралеобразной гексагональной структуры карбамида и, следовательно, комплексообразованию. Эта гипотеза объясняет и тот фа кт, что полярные растворители (иекоторые спирты, кетоны и хлорорганические соединения) в условиях комплексообразования легко растворяют жидкие и не растворяют твердые углеводороды, выполняя одновременно функции растворителя и активатора. [c.203]

    Зависимости, аналогичные рассмотренным, получаются для азеотропных смесей, образованных углеводородом и рядом полярных веществ. На рис. 23 приведены данные о составах и температурах кипения азеотропных смесей, образованных бензолом и спиртами. Пунктирные кривые на рис. 23 соединяют точки составов и температур кипения азеотропных смесей спиртов различного строения. Самая нижняя кривая относится к азеотроп-ным смесям с первичными спиртами, следующая, расположенная над ней кривая — к азеотропам с вторичными и самая верхняя— с третичными спиртами. Это показывает, что наибольшие отклонения от идеального поведения имеют место в системах, состоящих из углеводорода и первичных спиртов, и наименьшие — в системах, содержащих третичные спирты.  [c.80]

    Полярная структура молекул оказывает влмяние на многие свойства. Так, в частности, наличие диполя у молекулы приводит -к тому, что определенные взаимные расположения одной молекулы относительно другой являются более устойчивыми по сравнению с остальными, чего не наблюдается у неполярных молекул. Когда положительно заряженный конец одной молекулы находится вблизи отрицательно заряженного конца другой молекулы, взаимное притяжение молекул усиливается в результате электростатического взаимодействия. Между молекулами устанавливается междиполь-ная связь. Взаимодействия, обусловливаемые таким расположением, оказываются достаточно интенсивными, чтобы в случае сильно полярных веществ привести к установлению взаимной связи между молекулами, т. е. привести к объединению (ассоциации) их в своего рода комплексы. [c.81]

    В хлорной воде присоединение хлора идет достаточно медленно для того, чтобы почти количественно образовывался этиленхлоргидрин (см. стр. 370). Реакции олефинов с хлором и бромом в жидкой фазе идут обычно исключительно быстро 130], и применение растворителя, как правило, сказывается благоприятно. Этилен легко хлорируется при низких температурах в дихлорэтаповом растворе, как это применяется в промышленности. Хлориды элементов, образующих с хлором соединения высшей и низшей валентностей, как сурьма, железо, селен, являются эффективными катализаторами присоединения хлора к этилену. Присутствие полярных веществ можот катализировать присоединение галоидов например, реакция брома с этиленом в гааовой фазе сильно ускоряется, если стенки реактора покрыты стеариновой кислотой, но скорость реакции приближается к нулю, если стенки покрыты парафином [64]. Степень замещения хлором при реакции олефинов с хлором, как показано в табл. 3, поразительно велика [80]. Реакция замещения часто сопровождается перемещением двойной связи. [c.364]

    Термодинамические условия проявления эффекта Ребиндера, по-видимому, выполняются для большинства пар твердое тело — жидкость, контактирующих в природной обстановке. При всем разнообразии этих систем они всегда образованы полярными веществами, часто близки по составу и, кроме того, их поликомпонентность должна давать возможность выбора оптимально взаимодействующих компонентов, обеспечивающих максимальное понижение свободной энергии границ раздела фаз [266]. Количественные оценки оказываются часто затруднительными, так как точные значения свободной поверхностной энергии о известны лишь для отдельных минералов (каменная соль, кальцит). Для кварца и силикатов обычные методы определения о дают завышенные значения [267]. Еще меньше [c.92]

    Твердые углеводороды высококипящих фракций нефти и особенно остатков от перегонки мазута, характеризующиеся малыми размерами кристаллов, кристаллизуются, как правило, в агрегатной форме. Образованию агрегатов способствуют смолистые вещества, концентрирующиеся в высококипящей части нефти. Являясь полярными веществами, смолы адсорбируются на мелких монокристаллах твердых углеводородов и вследствие высокой полярности вызывают их агрегирование. В ряде случаев возможна агрегатно-дендритная кристаллизация, при которой происходит агрегация не монокристаллов твердых углеводородов, а дендритов. Кристаллизация этого типа наблюдается для твердых углеводородов высоковязких продуктов с больщим содержанием смол, прн охлаждении растворов масел, содержащих депрессорные при- [c.135]

    Эта теория й качественных Ёывбдах До аточно хорошо подтверждается экспериментальными данными [46]. Она аглядно объясняет стремление кристаллов покрываться плоскими, а не кривыми поверхностями. Кроме того, задолго до этой теории опытным путем было обнаружено [47, 48], что кристалл в пересыщенном растворе растет не плавно, а скачками, т. е. после некоторой (иногда продолжительной) остановки аблюдается быстрое отложение вещества на грани в виде прирастающего слоя со строго параллельным расположением частиц, который сразу покрывает всю грань или большую часть ее. Некоторые исследователи [49, 50] смогли наблюдать слоистый рост кристаллов, причем для гетеро-полярных веществ зарождение каждого слоя начиналось из углов грани. [c.266]

    Кроме данных о растворимости для выбора разделяющих агентов, можно использовать данные о критических температурах растворения, основываясь на том, что более высокому значению последней чаще всего отвечает меньшая взаимная растворимость. Данные о критических температурах растворимостк углеводородо в в различных растворителях систематизированы Фрэнсисом [40, 41], показавшим, что ароматические углеводороды значительно лучше растворяются в полярных веществах, чем неароматические. Отсюда вытекает возможность примене- [c.56]


Смотреть страницы где упоминается термин Полярные вещества: [c.271]    [c.71]    [c.436]    [c.37]    [c.547]    [c.37]    [c.87]    [c.217]    [c.324]    [c.109]    [c.44]    [c.57]    [c.64]    [c.64]   
Смотреть главы в:

Физика и химия твердого состояния органических соединений -> Полярные вещества




ПОИСК







© 2025 chem21.info Реклама на сайте