Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс диспергирования

    Оборудование для процесса диспергирования может состоять из шаровых мельниц, трех валковых краскотерочных бисерных или песочных машин. [c.547]

    Оба этих рисунка подтверждают достаточную для инженерной практики достоверность предлагаемой модели для описания реального процесса диспергирования в условиях акустического воздействия. Действительно, с течением времени в результате взаимодействия частиц твердой фазы с кавитационными пузырьками происходит рост числа частиц вследствие их разрушения, и темп этого роста сдерживается процессами агрегирования (рис. 3.3). Параллельно, спустя период индукции (из-за непрерывного генерирования) число кавитационных пузырьков остается постоянным (рис 3.4). Незначительное снижение их числа связано с уже отмеченными при построении факторами. Тем не менее, это снижение в пределах времени диспергирования не может существенно сказаться на качестве целевого процесса. [c.125]


    Ограниченный объем книги не позволяет охватить весь круг вопросов, связанных с процессами диспергирования газов и жидкостей. В какой-то мере читателю может помочь достаточно подробный обзор исследований, выполненных до 1970 г., который приведен в работе [77]. Ниже будут рассмотрены лишь процессы, протекающие при истечении газов и жидкостей из круглых одиночных отверстий или сопел с острыми кромками в неподвижную в среднем жидкость, которая смачивает материал сопла или перфорированной пластинки. [c.48]

    Параметры, характеризующие процессы диспергирования смеси мономеров в водную фазу, дробления и коалесценции частиц дисперсной фазы, определяются из следующих соотношений [30, 31]  [c.276]

    В лиофильных дисперсных системах межфазный слой характеризуется малым увеличением плотности свободной энергии и не имеет четкой границы. Разность /а—/э очень мала, энергетический барьер в этом случае почти отсутствует и Оар =акр. Поэтому под действием, напрпмер, теплового движения лиофильные дисперсные системы могут самопроизвольно диспергироваться, образуя термодинамически устойчивые дисперсные растворы. Свободная энергия системы при этом уменьшается, т. е. в процессе диспергирования происходит увеличение энтропии, что способствует уменьшению энергии dQ, поскольку система приходит к более вероятному равномерному распределению дисперсной фазы в дисперсионной среде, т. е. [c.67]

    Внедрение отдельных молекул илн групп молекул жидкой среды в микротрещины поверхностей трения, или по межкристаллитным плоскостям поверхностей трения приводит к облегчению микро-пластических деформаций поверхностных слоев, облегчению процессов диспергирования и т. п., что в свою очередь приводит к улучшению прирабатываемости трущихся пар, снижению сил трения и износа. [c.59]

    Таким образом, имея значения инфинитезимальных интенсивностей и начальные значения N 1 и N2 , используя систему предложенных выше уравнений, можно численным путем изучать механизм кавитационно-акустического диспергирования и/или заложить эту модель в расчет процесса диспергирования при проектных разработках. [c.125]

    Подбирая соответствующим образом совокупность условий, удается предотвратить адсорбционное понижение прочности там, где это нежелательно (пайка, сварка, применение жидких теплоносителей и т. п.), и, наоборот, использовать его для повышения эффективности процессов диспергирования, помола, обработки разных материалов как резанием, так и давлением. [c.314]


    Роль хлора в процессе диспергирования платины исследовали в работе [206]. Из табл. 2.10 видно, что при обработке воздухом отработанного алюмоплатинового катализатора дисперсность платины возрастает весьма, незначительно. В отличие от кислорода, воздействие хлора на платину в инертной среде значительно сильнее. Увеличение степени окисления платины при ее хлорировании не зависит от размера кристаллитов. При 450 °С в основном образуется [c.90]

    Отдельные компоненты нефтяной системы представляют собой набор гомологов. В зависимости от строения, длины цепи гомологи имеют различное поверхностное натяжение. Обладающие большей подвижностью и меньшим значением поверхностного натяжения гомологи концентрируются в межфазной области и облегчают процесс диспергирования при нагреве или действии механических напряжений. [c.31]

    Полагают, что капли удерживаются в метастабильном равновесии, не сливаясь, под действием электрических сил. Этот вопрос подробно будет обсужден далее (глава П). Здесь же рассмотрены исключительно процессы диспергирования большого объема жидкости на малые капли. [c.10]

    Это и понятно. При образовании эмульсии, как было указано выше, происходят два процесса — диспергирование и коалесценция. В течение первых нескольких секунд перемешивания преобладает первый процесс — диспергирование, а коалесценция распространяется лишь на малое число капель. Чем больше в процессе перемешивания образуется отдельных капель, тем более частыми будут и соударения между ними. После нескольких минут перемешивания коалесценция будет происходить столь же часто, как и диспергирование, т. е. оба процесса станут равновесными. Именно условиями равновесия определяются величина концентрации эмульгатора, размер капель и другие характеристики эмульсии .  [c.23]

    Это связано с двумя упрощающими предположениями (которые, однако, не всегда справедливы), а именно в процессе диспергирования основная роль отводится разрыву объема жидкости на отдельные капли, в процессе коалесценции — столкновениям капель . Уравнение (1.1) дает  [c.23]

    Дробление одной жидкости в другой, в которой она нерастворима, происходит в специальных аппаратах - коллоидных мельницах, диспергаторах, гомогенизаторах ". Независимо от конструкции аппарата процесс диспергирования проходит в соответствии с рассмотренным механизмом (по П.А. Ребиндеру). Большие сферические капли в силовом поле деформируются в цилиндрики, на что требуется некоторая затрата работы, т.к. при этом увеличивается запас свободной энергии системы. При определенном соотношении длины и диаметра цилиндрика жидкости, т.е. по достижении так называемых критических размеров, он самопроизвольно распадается на большую и малую капли, что термодинамически выгодно, т.к. в критическом состоянии свободная энергия его больше, чем сумма свободных энергий большой и малой капель (поверхность цилиндра больше суммы поверхностей капель). Процесс продолжается до тех пор, пока большая капля не станет сопоставимой с маленькой (порядка 10 м). [c.55]

    При воздействии акустических полей в жидкостях происходят сложные физико-химические явления, в результате которых не только ускоряются процессы диспергирования, массо- и теплообменные процессы и отдельные химические реакции, но и происходят фазовые превращения, не идущие в других условиях. [c.72]

    Интенсификация процесса диспергирования. [c.107]

    Основные закономерности процесса диспергирования. [c.108]

    Для оценки устойчивости нефтяной дисперсной системы при нагреве, когда усиливаются процессы диспергирования сложных структурных единиц и система стремится к состоянию истинного молекулярного раствора с бесконечной устойчивостью против расслоения, введено понятие термодинамической устойчивости [26]. Термодинамическая седиментационная устойчивость, обусловленная статическими законами диффузии, связана с дифф) зионно-седиментационным равновесием. Мерой ее является высота Ие, на протяжение которой концентрация дисперсной фазы изменяется в е раз  [c.28]

    Продолжительность процесса диспергирования I, в течение которого пигментные агрегаты измельчаются с начального (наибольшего) размера частиц а до размера а , зависит от прочности агрегатов, напряжения сдвига, диспергирующих свойств жидкой среды и гидродинамических условий, создаваемых в диспергирующих машинах. Скорость диспергирования оценивают по коэффициенту скорости К , представляющему собой приращение дисперсности во времени  [c.108]

    Зависимость степени диспергирования по клину от времени в полулогарифмических координатах (рис. 5.2) показывает, что процесс диспергирования может быть условно разделен на две стадии  [c.108]

    Таким образом, режим работы диспергирующего оборудования и, в конечном счете, характеристики лакокрасочных материалов во многом зависят от реологических свойств диспергируемой пасты, определяемых в первую очередь разбросом размеров частиц пигментов и степенью их смоченности пленкообразователем. Увеличение числа аппаратов, последовательно обрабатывающих диспергируемую пасту, лишь незначительно сглаживает разброс их характеристик, однако при этом значительно удорожается процесс диспергирования и усложняется, как бьшо показано вьппе, управление процессом. [c.113]


    Когда в раствор вовлекается много газа, образующиеся пузырьки, всплывая, создают на поверхности жидкости пенный слой, толщина которого увеличивается в процессе диспергирования жидкости и газа. В конечном счете вся жидкость насыщается пузырьками газа толщина жидких пленок уменьшается, форма пузырька постепенно изменяется из сферической в многогранную. [c.51]

    Поверхностно-активные молекулы, попадая в микротрещины поверхностей трения и достигая мест, где ширина зазора равна размеру одной-двух молекул, стремятся своим давлением расклинить трещину (рис. 33). Это явление известно под названием адсорбцион-но-расклинивающего эффекта, что также впервые было обнаружено и изучено акад. П. А. Ребиндером. Подсчитано, что давление на стенки трещины может достигать до 1000 кПсм . Адсорбционно-рас-клинивающее действие поверхностно-активных молекул также приводит к облегчению пластических деформаций в поверхностном слое и к понижению прочности металла. При трении металлов это приводит к лучшей приработке деталей и снижению величины силы трения. Однако адсорбционно-расклинивающее действие может приводить к увеличению износа трущихся пар за счет облегчения процессов диспергирования поверхностных объемов металла. [c.61]

    Поиск путей интенсификации процессов диспергирования в ГА-технике привел к идее раздельной подачи компонентов дисперсной системы в аппарат. Подают компоненты в режиме автодозировки, в полость элемента перфорации, в камеру озвучива-/ния. Полагается, что эти приемы позволяют доставлять компоненты в область с наибольшей активностью ГА-воздействия. [c.44]

    На послед)пощих стадиях, когда выработаны физико-химический (особенности взаимодействия внутренней и внешней фаз конкретной дисперсии) и энергетический (количество подводимой для диспергирования энергии, обеспечивающей такое взаимодействие) ресурсы применительно к конкретной системе, что в эксперименте наблюдается как момент выхода на плато кинетической кривой, в объеме дисперсии, во-первых, сохраняется количество передаваемой энергии и, во-вторых, большая часть внутренней фазы уже имеет размер осколков , поэтому интегральное увеличение степени дисперсности невозможно при одновременно созданных условиях активного агрегирования этих осколков . Далее, при накоплении достаточного количества вторичных агрегатов вновь начинается процесс диспергирования далее совокупность этих процессов повторяется — из-за чего и наблюдаются осцилляции дисперсности. Здесь важно отметить тот факт, что часть привносимой энергии расходуется не только на достижение конечной цели, но и на возбуждение и поддержание паразитных осцилляций — это практическое замечание. Не менее важен и научно-познавательный аспект мы наблюдаем ранее не отмечавшееся явление кооперативного поведения многочастичных дисперсных систем в распределенных силовых полях. Подобные факты отмечались лишь в биологических, химических, экологических системах. Необходимо отметить, что в определенных условиях такое поведение свойственно и дисперсным системам, что отражает общенаучный характер этого явления. [c.128]

    Ставаш А. К. Кинетика процесса диспергирования лакокрасочных суспензий в роторно-пульсационном аппарате. Автореферат дис.. .. канд. техн. наук. — Л., 1974. [c.200]

    Двухфазный поток образуется в результате диспергирования одной фазы (жпдкой пли газовой) в другую фазу. Для диспергирования обычно используются специальные сопла плп перфорированные пластины. Особую сложность приобретает процесс диспергирования в том случае, если материал распылителя хорошо смачивается диспергируемой жидкостью [1, 2]. При этом применение обычных распылителей приводит к образованию крупных капель, размер которых практически не поддается регулированию. Поэтому для изготовления распылителей необходимо использовать материал, который плохо смачивается диспергируемой жидкостью. В крайнем случае применяются специальные распылители с острыми соплами [1] [c.274]

    В предыдущблМ разделе был рассмотрен механизм образования капель и пузырей в процессе диспергирования жидкости или газа. Однако частицы дисперсной фазы в процессе своего движения по высоте аппарата подвергаются различным воздействиям, которые приводят к изменению средних размеров частиц. В аппарате непрерывно происходят два противоположных процесса дробление дисперсной фазы и коагуляция частиц. Суммарный эффект этих процессов наряду с начальным процессом образования дисперсии определяет средний размер частиц и их распределение по размерам. Внешним выражением наличия противоположных процессов дробления и коагуляции является экстремальный характер зависимости размеров диспергированных частпц от нагрузкп по дисперсной фазе и бимодальный характер распределения частиц по размерам, о котором говорилось в предыдуш ем параграфе. [c.287]

    При выборе типа воздействия из определенного класса, например акустического, необходимо учитывать конкретные свойства исходных материалов и конечных продуктов процесса (структурно-механических, акустических, реологических и др.). В общем случае могут быть использованы частотные критерии и временнью зависимости. Для некоторых процессов (диспергирование фаз) спектральные характеристики воздействия предопределяют вид кривой распределения дисперсной фазы. [c.110]

    В контактном теплообменном аппарате диспергирование одной из фаз производится при помощи распылителя той или иной конструкции (сопла, перфорированные тарелки и т.п.). На выходе из распылительного устройства происходит дробление струи на множество капель. При этом в барботажном слое создается развитая поверхность контакта фаз. На струю жидкости, вытекающую из отверстия или насадки, действуют силы инерции и гравитации, силы вязкости, поверхностного натяжения, а также турбулентные пульсации в струе и в самой среде. Капли, образующиеся при распаде струи, в процессе движения соударяются между собой п со стенками аппарата. Таким образом, конечная величина частиц диспергируемой фазы определяется суммарным эффектом трех процессов диспергирования, дробления и коалесценции. Определение этой величины расчетным путем пока еще невозможно из-за недостаточной изученности вопроса. Однако для ряда частных случаев решения уже получены и содержатся в работах Колдер-бенка, Фудзияма, Хейфорта и Тройбэла, Сиемса и др. [3]. [c.66]

    Поскольку НДС в точке фазового перехода второго рода характеризуются аномально высокой чувствительностью к наличию градиентов силовых нолей, в качестве воздействия, управляющего карбонизуемой нефтяной системой в окрестностях точек фазового перехода, мы предлагаем использовать ультразвуковое поле. Известны такие эффекты ультразвукового воздействия, как звуковое давление, ускорение процессов диффузии и теплопередачи, кавитация, химические эффект ы (сонолиз), усиление процессов диспергирования и коагулирования неоднородных систем, капиллярный эффект и др. Подбирая частоту и иитенсивность УЗ-излучения, можно усиливать те или иные эффекты. [c.25]

    Все процессы диспергирования осуществляются только при затрате работы и с прекращением этой затраты останавливаются. Д1еханизм процессов диспергирования еще недостаточно изучен. Однако очевидно, что работа, затрачиваемая на дробление, иро-иорциональиа поверхности вновь образуемых частнц и должна сильно возрастать с увеличением задаваемой стеиеии дисперсности. Непосредственное диспергирование до коллоидных частиц требует затраты огромного количества энергии и практически неосуществимо. В лучшем случае оно приводит к образованию грубодисперсных золей. [c.189]

    Более рационально использование для модификации неокисленных битумов термопластов. Вязкости битума и термопластов при температуре, требуемой для производства эмульсии, примерно одного порядка, и процесс диспергирования протекает достаточно легко. При применении таких эмульсий получают покрытие высокой прочности и износоустойчивости. [c.40]

    В процессе диспергирования возрастает свободная поверхностная энергия и энтропия, связанная с тепловым движением коллоидных частиц. При диспергировании твердых тел до порошкообразного состояния роль энтропийно -о фактора ничтожна. В случае превышения энтропии над свободной энергией, свя- анной с развитием поверхности, формирование коллоидной системы оказывается термодинамически вы10диым процессом и может протекать самостоятельно, особенно в дисперсных системах с газообразной и жидкой дисперсионной средой. [c.65]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    Имеется, вероятно, одна причина, по которой процесс диспергирования не изучался так хорошо, как кинетика коалесценции. Внут-рифазовое диспергирование — быстрый процесс, протекающий в течение секунды или менее. Коалесценция — процесс сравнительно медленный. Обычно коалесценция длится минуты, часы и даже месяцы и, следовательно, может быть детально изучена. Исследование быстрых процессов требует значительной модернизации оборудования даже в случае простых систем. [c.10]

    Действенным методом повышения эффективности воздействия акустических полей на процесс диспергирования является совместное действие полей двух частот. На рис. 3.9. представлена амплитудно-частотная характеристика акустического гомогенизатора, используемого в аппарате для смачивания и диспергирования пигментных материалов. На вибрационном спектре, косвенным образом характеризующем диспергирующие свойства гомогенизатора, представлены колебания полей двух частот (800 Гц и 2000 Гц). Один из возможных механизмов взаимодействия полей двух частот строится [43] на предположении, что кавитационная эффективность определяется захлопыванием полостей в поле низкой частоты, а действие высокочастотного поля создает дополнительную осцилляцию полостей. Оценку такого механизма взаимодействия можно провести на основании уравнения движения полости в форме Нолтинга - Неппарайса  [c.65]

    Диспергирование сажи в углеводородах является слож-][ым и недостаточно изученным ироцессом [1, 2]. В связи с развитием производства стереорегулярных каучуков исследование процессов диспергирования сажи в углеводородах и механизма стабилизации диаперсии приобретает значительный интерес для промышленности СК. [c.209]

    Ко второй группе относятся вещества, проявляющие поверхностную активность на границе двух несмешивающихся жидкостей, но не образующих коллоидных структур. Такие вещества, адсорбируясь на поверхностях раздела, понижают свободную поверхностную энергию жидкости или твердого тела и тем самым облегчают процесс образования новой поверхности, в частности, в процессе диспергирования. Поэтому ПАВ второй группы называются диспергаторами. Сюда относятся такие важные для практики процессы, как распыление жидкостей, эмульгирование, диспергирование твердых тел и т. п. Диспергаторами могут быть любые ПАВ, адсорбирующиеся на поверхности частиц дисперсионной среды. Однако обычно применяемые диспергато-ры представляют собой вещества, стабилизирующие образующуюся высокодисперсную суспензию. Поэтому в водных средах диспергаторами служат гидрофилизирующие ПАВ, чаще поверхностно-активные полимеры. Сильно поверхностно-активные вещества, не являющиеся стабилизаторами, могут быть деэмульгаторами, т. е. способствовать разрушению эмульсий, если они сильнее адсорбируются, чем стабилизатор. В этом случае происходят вытеснение вещества стабилизатора с поверхности капелек и адсорбция вещеста деэмульгатора. Однако неспособность последнего обеспечить агрегативную устойчивость эмульсий приводит к ее разрушению. [c.34]


Смотреть страницы где упоминается термин Процесс диспергирования: [c.116]    [c.216]    [c.188]    [c.192]    [c.192]    [c.13]    [c.13]    [c.175]    [c.394]   
Смотреть главы в:

Переработка термопластичных материалов -> Процесс диспергирования




ПОИСК





Смотрите так же термины и статьи:

Диспергирование



© 2024 chem21.info Реклама на сайте