Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межфазные границы

    Представления об особой, исключительной роли воды во множестве процессов, происходящих в природе, возникли еще в древности и затем часто высказывались на всех этапах развития естественных наук. В прошлом веке, когда геология оформилась как самостоятельная ветвь естествознания и начала брать на вооружение физико-химические и математические методы исследования, геологическую деятельность воды стали рассматривать как двоякую химическую и механическую. Условность такого разграничения была очевидна с самого начала тем не менее до сих пор продолжают появляться работы, в которых механические свойства горных пород анализируются без учета физико-химического влияния среды даже в тех случаях, когда это влияние давно обнаружено. Это связано с тем, что интеграция наук о Земле с различными разделами других естественных наук происходит неравномерно. Так, химическая термодинамика проникла в геологию намного раньше, чем кинетика механика идеализированных сплошных сред опередила физику реального, дефектного твердого тела и т. д. Однако такая очередность, в какой-то мере отражающая возраст отдельных областей фундаментальных наук, никоим образом не соответствует степени их важности для понимания природных процессов. К числу разделов науки, внедрение которых в геологию началось совсем недавно, относится физи-ко-химическая механика твердых тел и дисперсных систем, рассматривающая механические свойства в их взаимосвязи с физико-химическими процессами, протекающими на межфазных границах. [c.84]


    Низкомолекулярные и высокомолекулярные ПАВ по-разному заполняют межфазную поверхность, на которой они адсорбируются. Низкомолекулярные ПАВ на границе вода — органическая жидкость располагаются в виде частокола (рис. 4.1, а) из вертикально поставленных молекул — гидрофильная голова , обозначенная кружочком, находится в воде, а гидрофобный хвост — в органической жидкости. Для высокомолекулярных ПАВ нельзя предложить такую же простую геометрическую модель их расположения на межфазной границе, так как оно существенно зависит от концентрации ПАВ в адсорбционном слое. При малой концентрации ПАВ молекулы расположены горизонтально (рис. 4.1, б). При повышении концентрации ПАВ ориентация молекул, так же, как и у низкомолекулярных ПАВ, стремится к вертикальной 13, 78]. [c.60]

    На первом уровне рассматриваются процессы, протекающие в единичном структурном элементе — поре — с учетом ее реальных геометрических характеристик и их влияния на процессы переноса. Элемент характеризуется коэффициентами переноса, константами скорости химических реакций, адсорбции, энергиями активации, условиями возникновения межфазных границ и т. д., для него должны быть определены внешние условия — температура, давление, концентрации исходных веществ и продуктов и др. В средах с неоднородной пористой структурой, характеризующейся распределением пор по размерам, учитывается также влияние неравномерности распределения размеров пор на характер протекающих в них процессов. [c.141]

    Характерные особенности многофазной фильтрации связаны также с влиянием поверхностного натяжения на границе раздела фаз. Граница двух соседних фаз в пористой среде разбивается на множество искривленных участков, радиус кривизны которых сопоставим с размером пор. Как отмечалось в гл. 1, на межфазной границе возникает капиллярный скачок давления р , определяемый по формуле Лапласа, [c.254]

    Между металлом и внешним пространством возникает градиент потенциала, стремящийся задержать эмиссию электронов. В конечном счете устанавливается равновесное состояние, при котором, однако, металл притягивает электроны внешнего пространства к своей поверхности, а последние отталкивают электроны металла от поверхности вглубь металла. В итоге в поверхностных слоях металла образуется избыток положительных ионов и создается двойной электрический слой по обе стороны межфазной границы. [c.184]


    Основная задача теории состоит в определении степени затухания и коэффициентов турбулентного обмена вблизи межфазной поверхности, и без решения этой задачи невозможно создать точные аналитические методы расчета процес- сов турбулентного обмена. Величина п является функцией пульсационного поля скоростей вблизи межфазной границы. Поэтому для определения п необходимо знать детальную картину течения внутри вязкого подслоя. [c.177]

    Капиллярное давление, пропорциональное кривизне межфазной границы, согласно (9.3) зависит от структуры порового пространства и от преимущественной смачиваемости скелета породы каждой из фаз. Капиллярные силы, способные создать в поровых каналах достаточно большие градиенты давления по сравнению с внешним перепадом, полностью определяют распределение фаз в поровых каналах. Давление в фазе, менее смачивающей породу (Р2), в формуле (9.3) будет больше на значение капиллярного давления. [c.254]

    Анизотропия вращательной подвижности. Теоретические расчеты и данные машинного моделирования свидетельствуют о том, что молекулы воды вблизи межфазной границы ориента-ционно упорядоченны [2, 599, 600]. Наблюдаемый экспериментально поверхностный скачок потенциала и экспоненциальное отталкивание межфазных границ в тонких пленках также объясняется поляризацией молекул воды в поверхностной области [601, 602]. Вследствие ориентационной анизотропии возникает остаточное расщепление линий ЯМР воды и наблюдаются некоторые особенности ЯМР релаксации воды в гетерогенных системах. [c.234]

    Последнее представляется естественным по той причине, что при постоянстве насыщенности одной из фаз мениски межфазной границы двух других фаз должны смещаться в более крупные поры при увеличении насыщенности более смачивающей фазой и в более мелкие-при ее уменьщении. Математическое выражение этих свойств таково  [c.288]

    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]

    Электроды, на межфазных границах которых протекают ионообменные реакции. Такие электроды называют мембранными или ионообменными, их называют также ионселективными. [c.115]

    Обсуждаются [14] возможности управления проницаемостью полимерных мембран за счет модификации поверхности мембранной матрицы веществом иной природы. Повышение газопроницаемости модифицированной мембраны является следствием изменения механизма сорбции на межфазной границе и реализацией в этой области режима неравновесного массопереноса. Коэффициенты диффузии растворенного газа в матрице мембраны (вдали от границ) остаются неизменными при поверхностной модификации. [c.113]

    Результатом решения задачи (3.23)—(3.26) является усредненный по функции РВП удельный поток массы и тепла (I) на межфазную границу для единичного включения средних размеров I  [c.145]

    Правомерность введения а-фазы следует из того, что на межфазной границе, где молекулы взаимодействуют не только с молекулами своей фазы, но и с близлежащим слоем молекул другой фазы, свойства вещества и его реакция могут заметно отличаться от свойств этой же фазы на существенно больщих расстояниях от межфазной границы, но все еще малых по сравнению с размерами кристаллов. [c.73]

    Построение детализированной связной диаграммы Е-фазы с подробным учетом всех ее физико-химических особенностей является сложной задачей из-за недостаточной изученности термодинамики поверхностных явлений [6]. Поэтому диаграммное представление процессов на границе раздела фаз в настоящей работе будет ограничено только отображением межфазных переходных потоков совместно с условиями равновесия на межфазной границе. [c.143]


    Матричное выражение (2.96) может быть интерпретировано как система линейных феноменологических соотношений между потоками и движущими силами на межфазной границе [c.162]

    Электроды, на межфазных границах которых протекают реакции с участием электронов. Такие электроды называют электронообменными. [c.115]

    Прежде чем перейти к рассмотрению и сопоставлению величин теплот и энергий гидратации отдельных,ионов, следует подчеркнуть одно обстоятельство, на которое вперкые обратили внимание Ланге и Мищенко (1930). При проведении цикла, лежащего в основе уравнения (2.1), свободные ионы переносятся из газовой фазы в жидкую межфазную границу с локализованным на ней поверхностным скач ком потенциала Каждый моль ионов совершает при этом электрическую работу, равную (где 2,Р — заряд 1 моля г-го [c.51]

    К третьему уровню иерархии ФХС (рис. 1.1) можно отнести следующие явления [1, 20, 21 ]. Элемент дисперсной фазы (пузырь, капля), в котором протекают химические реакции как в объеме, так и на межфазной границе, движется в объеме сплошной фазы под действием сил Архимеда, инерционных сил и сил сопротивления, подвергаясь одновременно воздействию механизма переноса массы (ПМ), энергии (ПЭ) и импульса (ПИ) через границу раздела фаз в направлении 1 2. В качестве исходной причины возникновения межфазных потоков субстанций, обусловливающей всю совокупность явлений, составляюпщх механизм межфазного переноса, естественно принять неравновесность гетерогенной [c.26]

    Иотюселективпые электроды отличаются от всех рассмотренных ранее тем, что у них обе граничащие фазы — мембрана и раствор — облпляют ионной проводимостью, и поэтому на их границе не про-исхичит собственно электрохимическая реакция с переиосом электронов. Процесс сводится здесь к обмену ионами между мембраной и раствором. Межфазную границу пересекают только ионы, заряд [c.172]

    Решение уравнения (16.7) совместно с краевыми условиями, выражающими постоянство концентрации на межфазной границе и вдали от нее, приводит к отедующей связи между коэффициентом массоотдачи k п коэффициентом молекулярной диффузии А о что эквивалентно St S .  [c.173]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]

    Артор не совсем точно излагает основные концепции, лежащие в основе модели Кинга, а также выводы в отношении характера зависимости от В а, вытекающие из нее. В основу модели положена возможность одновременного действия двух механизмов переноса вещества от свободной поверхности вглубь жидкости в турбулентном потоке. Один из них соответствует постепенному затуханию коэффициентов турбулентного обмена с приближением к межфазной границе. Этот механизм Кинг считает относящимся к вихрям сравнительно небольшого масштаба. Другой механизм связан с обновлением поверхности сравнительно крупными вихрями (их размер должен быть больше толщины слоя, в котором происходит затухание по первому механизму и где соответственно происходит основное изменение концентрации). Таким образом, модель Кинга, по существу, включает представления теорий пограничного диффузионного слоя (см. выше) и обновления поверхности (см. ниже). Что касается возможного характера зависимости от О а, то на основании собственных экспериментальных данных, полученных в ячейке с мешалкой и в насадочной колонне и анализа результатов, полученных другими исследователями, Кинг приходит к выводу о более узком интервале практически возможного изменения показателя степени при Оа от 0,5 до 0,75. Прим. пер. [c.102]

    Анализу рассматриваемого эффекта возникновения нестабильности жидкости под воздействием градиента поверхностного натяжения применительно к абсорбции СО, аминами посвящена также работа П. Л. Т. Бриана б, а применительно к другим случаям — еще несколько работ, появившихся в последнее время и названных в списке дополнительной литературы. Общее теоретическое расс.мотрение неустойчивости жидкости и возникновения турбулентности вблизи межфазной границы под воздействием локальных изменений поверхностного натяжения (эффекта Марангони) при протекании процессов тепло- или массопередачи было впервые предпринято К. В. Стерлингом и Л. И. Скривеном 7. [c.250]

    D а V i е S J. Т., hem. Eng. Progr., 62, № 9, 89 (1966). Обновление межфазной поверхности (и возникновение турбулентности у межфазной границы) в процессе массопередачи. [c.280]

    Значимость фактора неоднородности суш,ественно повышается, когда катализатор полпкрпсталличен. Обычно это пористые тела, состояш ие пз большого числа отдельных гранул. Часто прп этом они двух- и трехфазны. Последнее справедливо для всех нанесенных и смешанных катализаторов, которых на практике большинство. При этом многообразие физико-химического происхождения источников неоднородностей значительно возрастает за счет появления межкристаллитных п межфазных границ, твердых растворов и промежуточных фаз. Различия в доступности и в кривизне поверхности в порах и капиллярах различных размеров являются дополнительными источниками макронеоднородностей. [c.12]

    С. А. Недужему, отрыв капель масла в воду происходит тогда, когда захлопывается кавитационный пузырек в воде вблизи межфазной границы. В развитие этой идеи предполагается, что дробление дисперсной фазы происходит струями к центру захлопывающегося пузырька, однако количественная оценка отсутствует. Б. Г. Новицкий [18] объясняет процесс эмульгирования в звуковом поле флотационным действием кавитационных пузырьков, перемещающихся поступательно через границу раздела фаз и увлекающих на своей поверхности дисперсную фазу непосредственно эмульгирование обусловлено высокими градиентами скоростей микротечений около пузырьков. На приведенных кинограммах не указаны пространственно-временные масштабы, а выведенные уравнения получены при многочисленных произвольных допущениях. [c.122]

    Перенос массы и энергии через границу раздела фаз нарушает равновесие сил на межфазной границе и обусловливает (дуги 7, S) местные неравномерности ее поверхностного натяжения (AJ. Локальные изменения поверхностного натяжения (А ) являются основной причиной (дуга 14) возникновения межфазной спонтанной конвекции (МСПК), которую можно подразделить на две категории упорядоченную (МСПК-У) и неупорядоченную (МСИК-НУ) [211. [c.28]

    Скоростная неравномерность фаз приводит (дуга 12) к появлению поверхностной диффузии (ПОВД), в результате которой по-верхностно-активное веш ество (ПАВ) сдувается к корме дви-жуш егося включения, создавая (дуга 52) тем самым неравномерность распределения ПАВ по поверхности включения (эффект Анав)- Эффект Апав вносит существенный вклад (дуга 13) в неравномерность поверхностного натяжения межфазной границы [c.28]

    Третий этлп — учет массового, силового и энергетического взаимодействия фаз, происходящего па межфазных границах. Это достигается путем постановки соответствующих краевых [c.139]

    Здесь — средний радиус эквивалентной сферы включения =diag ( 1, Р21 -I Ря) матрица коэффициентов равновесного распределения концентраций и температур на границе раздела фаз условие (3.17) постулирует неразрывность потока субстанции через межфазную границу, причем элементы матриц в силу принятой конструкции модели следует рассматривать как эффективные коэффициенты переноса соотношение (3.18) отражает экстремальные условия на внешней сфере ячейки. [c.143]

    Исследованиями П. А. Ребиндера, М. М. Кусакова, К. Е. Зинченко и Л. Г. Гурвича [42, 88] было установлено, что поверхностная активность нефти обусловлена суммарным содержанием в ней полярных соединений, которые концентрируются в высокомолекулярных, тяжелых фракциях нефти и относятся к группе гете-роорганпческих соединений, проявляющих поверхностную активность на межфазных границах различной природы . Обратимся к более детальному рассмотрению этих соединений и их свойств. [c.7]

    В условиях избирательного смачивания твердой поверхности нефтью и водой порфирины играют большую роль, определяя поведение нефти, содержащей их на межфазных границах. Это оп-четливо видно при изучении кинетики избирательного смачивания бензольными растворами асфальтенов твердой поверхности. Для исследования были выбраны асфальтены с различным содержанием в них порфиринов. Величину избирательного смачивания оценивали по краевому углу, измеряемому проекционным методом. В кювету с дистиллированной водой помещают полированную, тщательно очищенную пластину исследуемого материала. Шприц, снабженный иглой с загнутым кончиком, заполняют исследуемой углеводородной жидкостью, каплю которой выдавливают в воде [c.165]


Смотреть страницы где упоминается термин Межфазные границы: [c.174]    [c.176]    [c.177]    [c.261]    [c.106]    [c.15]    [c.200]    [c.231]    [c.123]    [c.160]    [c.15]    [c.254]    [c.18]    [c.33]    [c.89]    [c.102]   
Идеи скейлинга в физике полимеров (1982) -- [ c.0 ]

Идеи скейлинга в физике полимеров (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Межфазные



© 2025 chem21.info Реклама на сайте