Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация газов

Рис. Д.155. Электрическая схема детектора для измерения ионизации газов под действием излучения. Рис. Д.155. <a href="/info/39673">Электрическая схема детектора</a> для <a href="/info/716442">измерения ионизации</a> газов под действием излучения.

    Коронный разряд возникает из тихого разряда при более высокой напряженности электрического поля в случае неоднородного электрического поля, вблизи электрода с малым радиусом кривизны возникает корона. В короне происходит ударная ионизация газа, отсутствующая в области разряда вне короны. [c.266]

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]

    Описанные процессы ионизации газов вызываются только заряженными частицами. Однако счетчик Гейгера можно применять также для измерения у-излучения. Попадая на стенки счетчика, оно вызывает эмиссию вторичных электронов. Каждая рабочая область или соответственно каждый тип счетчика имеет евои достоинства и недостатки. Для работы ионизационной камеры необходимы небольшие напряжения, но при этом возникают слабые токи, и поэтому необходимо использовать большое усиление или чувствительный регистрирующий прибор. Ионизационные камеры применяют в основном при измерении излучений большой интенсивности или при работе с сильно ионизирующим -излучением. [c.386]

    Наиболее эффективная очистка газа от пыли достигается в электрофильтрах. Действие их основано на ионизации газа, т. е. расщеплении его молекул на положительно и отрицательно заряженные ионы, которое движутся к противоположно заряженным электродам. При повышении разности потенциалов между электродами до нескольких тысяч вольт кинетическая энергия ионов и электронов настолько возрастает, что при соударениях они расщепляют встречные молекулы на ионы и газ полностью ионизируется. Ири этом наблюдается слабое свечение газа ( корона ) вокруг проводника, который носит название коронирующего электрода. Ионы, имеющие тот же знак, что и коронирующий электрод, движутся к другому, осадительному электроду, который обычно соединен с положительным полюсом. При движении в запыленном газе отрицательные ионы [c.155]


    Для ионизационных детекторов газовой хроматографии, помимо указанных факторов, используется ряд других явлений, связанных с ионизацией газов, [c.602]

    Действие электрофильтра основано на ионизации газа, т. е. расщеплении его молекул на положительно и отрицательно заряженные ионы. Газ можно ионизировать в пространстве между двумя электродами, к которым подведен электрический ток. Под действием электрического поля в газе образуются ионы и свободные электроны, благодаря движению которых через газ начинает протекать ток. [c.339]

    Ион, находящийся в поле, приобретает определенную скорость в зависимости от напряжения поля. При превышении некоторого критического значения напряжения кр ионы уже имеют настолько большую скорость (а следовательно, и кинетическую энергию), что могут путем соударения ионизировать нейтральные частицы. Вновь образовавшиеся ионы приобретают такую же высокую скорость и становятся способными вызывать дальнейшую ионизацию. Происходит лавинная ионизация газа, которой сопутствует стремительный рост электропроводности (проявляется в виде искр.) [c.121]

    При полной ионизации газа между электродами возникают условия для электрического разряда. С дальнейшим увеличением напряженности электрического поля возможен проскок искр, а затем электрический пробой и короткое замыкание электродов. Чтобы избежать этого, создают неоднородное электрическое поле путем устройства электродов в виде проволоки, натянутой по оси трубы (рис. У-50, а), или проволоки, натянутой между параллельными пластинами (рис. У-50, б). Густота силовых линий и, следовательно, напряженность поля в этих условиях наиболее высока у провода и постепенно убывает по мере приближения к трубе или пластине. Напряженность поля непосредственно у трубы (пластины) является недостаточной для искрообразования и электрического пробоя. [c.239]

    Для очистки промышленных газов в химической промышленности применяют о д и о 3 о н н ы е электрофильтры, в которых процессы ионизации газа и осаждения частиц пыли происходят в одном и том же электрическом поле. Для тонкой очистки вентиляционного воздуха используют двухзонные электрофильтры, в которых эти процессы протекают в отдельных зонах аппарата. [c.241]

    Известны и многие другие тепловые эффекты теплоты полиморфных и агрегатных превращений (см. гл. IV), образования ионов в водных растворах, ионизации газов, разрыва связей и диссоциации молекул в газообразном состоянии, адсорбции и др. [c.50]

    В аналитической химии используют три основных метода обнаружения и регистрации излучений а) электрическое детектирование ионизации газов под действием излучения б) измерение светового излучения, возникающего при облучении некоторых веществ в) прямую регистрацию излучений фотографическим методом. Последний из перечисленных методов по существу применяется только для определения характера распределения радиоактивных веществ по поверхности твердых тел, таких, как минералы или биологические объекты. [c.384]

    Дифрагированное излучение вызывает в зависимости от его интенсивности соответствующие степень ионизации газа в цилиндре и импульс тока. На шкале регистрирующего прибора получают показания, пропорциональные интенсивности рентгеновских лучей. Запись ионизационной кривой интенсивности / осуществляется в координатах /—20 (рис. 90). [c.154]

    Один из ионизационных приборов для измерения радиоактивных излучений — газоразрядный счетчик Гейгера (рис. 5). Он представляет собой стеклянный или металлический цилиндр, заполненный смесью инертных газов (аргона и неона) с добавкой галогенов— хлора и брома. Боковая поверхность металлического цилиндра (или слой металла, нанесенный на поверхность стекла) является катодом счетчика. Анод —тонкая металлическая нить, находящаяся внутри цилиндра. На электроды счетчика поступает постоянное напряжение. При попадании радиоактивного излучения в объем счетчика через тонкое слюдяное окошко происходит ионизация газа в объеме счетчика. При этом электроны устремляются к аноду, а положитель- ные ионы — к катоду. В результате в цепи счетчика возникает импульс тока, а на сопротивлении нагрузки — импульс напряжения. Последний усиливается специальной счетной установкой Б-2 и приводит в действие механический счетчик — регистратор импульсов. [c.20]

    Блок-схема счетной установки Б-2 приведена на рис. 6. Газоразрядный счетчик помещен в свинцовый до МИК, служащий для уменьшения так называемого фона Фон счетчика объясняется попаданием в его объем кос мических лучей и постороннего радиоактивного излуче ния, что способно вызывать ионизацию газа в счетчике хема передней панели установки Б-2 приведена на рис. 7. [c.20]

    Допустим, что частица аэрозоля вначале не имеет заряда и адсорбция на ней ионов, всегда присутствующих в газовой фазе в результате ионизации газов под действием космических или ультрафиолетовых лучей, неспецифична. Такая частица, сталкиваясь с ионом, адсорбирует его и приобретает заряд. Так как концентрация ионов в газе невелика, то эти столкновения редки — интервал времени от одной встречи до другой может измеряться минутами. При новом столкновении адсорбировавшей частицы с ионом заряд частицы может увеличиться или уменьшиться в зависимости от знака заряда и валентности иона, с которым она столкнулась. В результате подобных встреч частица может даже изменить знак заряда или стать нейтральной. Конечно, одновременно происходит и десорбция ионов, захваченных частицей. Таким образом, частица время от времени меняет заряд, но колебания заряда в общем должны происходить около среднего нейтрального состояния. Нетрудно видеть, что колебания заряда частиц аэрозоля имеют характер флуктуаций и являются отражением молекулярно-кинетического движения ионов и частиц. При таких условиях вероятность -приобретения частицей какого-либо заряда определяется выражением  [c.346]


    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Наиболее простой способ получения плазменного состояния — нагревание газа до высоких температур. Степень ионизации газа увеличивается постепенно с повыщением температуры. Переход частично ионизированной плазмы в полностью ионизированную происходит при определенной температуре, когда кинетическая энергия поступательного движения частиц газа становится равна энергии их ионизации. [c.246]

    С помощью электронного удара большей энергии можно переводить Электроны атомов на третий, четвертый и т. д. уровни, что отмечается по поглощению энергии бомбардирующих электронов. При сообщении определенной энергии происходит отрыв электронов от атомов — наблюдается ионизация газа. Этим методом было установлено, что для ионизации атома ртути необходима энергия 10,4 эВ. [c.17]

    Для реального неоднородного источника света вводят понятие средних эффективных значений температуры Гэф и концентрации электронов Ий, эф. Обе характеристики столба дуги зависят от V , эф газа, заполняющего разряд, т. е. материала электрода и состава пробы (1/1, эф — эффективный потенциал ионизации газа). На рис. 3.4 приводится зависимость Т угольной дуги от К/ элементов. [c.36]

    Ионизация газа (в частности, воздуха) — одно из наиболее легко регистрируемых проявлений радиоактивности. Это явление лежит в основе количественного изучения радиации. [c.388]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]

    Альфа-излучение регистрируется счетчиком по ионизации газа. [c.99]

    Если введение анализируемого вещества вызывает увеличение рекомбинаций или существенное уменьшение подвижности, ток детектора падает, и это уменьшение тока регистрируется па хроматограмме как пик данного вещества. На этом принципе основана работа детектора электронного захвата. Ионизация газа-носителя в этом детекторе приводит к образованию положительных ионов и электронов малой энергии (медленных электронов). Почти весь ток, возникающий в детекторе, переносится электронами, так как их подвижность благодаря малой массе примерно на 3 порядка выше подвижности ионов. [c.50]

    Полный сбор электронов и ионов, возникающих в р< зультате первичной ионизации газа-носителя, создает фоновый ток детектора. Вероятность перехода возбужденных атомов ар1 она или гелия в первоначальное энергетическое состояние значительно увеличивается при введении в детектор веществ, имеющих близкие или меньшие потенциалы ионизации (энергию отрыва электрона), чем энергия возбужденного состояния А + М А М + е. Образовавшиеся в результате вторичной ионизации заряды создают дополнительный ток, являющийся сигналом детектора на введенное количество вещества (рис, И 26, в). [c.52]

    Само по себе самовоспламенение, как было показано, происходит в две стадии [111, ИЗ] первая характеризуется выделением света малой интенсивности и умеренным повышением давления вторая — светом большой интенсивности, резким повышением давления и ионизацией газов. Согласно этой теории, сопротивляемость топлива детонации изменяется прямо пропорционально давлению сжатия, которое требуется для того, чтобы вызвать первую стадию, и обратно пропорционально количеству тепла, выделяемому в этой стадии. Добавление перекиси снижает давление и температуру, требуемые для инициирования реакции. Взрыв во всех случаях происходит при второй фазе самовосила-менения. [c.410]

    Температуры, существенно превышающие уровень температур в печах и камерах сгорания, наблюдаются в дугах, в ударно нагретых газах перед движущимися с гиперзвуковон скоростью аппаратами, такими, как планетарные зонды, возвращающиеся космические корабли, и в ядерных взрывах. При столь высоких температурах в спектрах появляются линии одноатомного газа и электронные системы полос многоатомных газов, обязанные переходам между электронными уровнями энергии — связанно-связанным переходам. Фотоионизация, или свя-занно-свободные переходы, возникают в том случае, когда процессы с участием фотонов и термического возбуждения достаточны для ионизации газа. Эти переходы дают непрерывный спектр, являющийся противоположностью линиям или полосам поглощения, поскольку фотон, обладая энергией ниже требующегося для ионизации минимального значения, тем не менее может вэаи- [c.487]

    Ионизация газа осуществляется двумя способами 1) самостоятельно, при достаточно высокой разноии потенциалов на электродах 2) несамостояте.гьно — в результате воздействия излучения радиоактивных веществ, рентгеновских лучей и т. д. [c.61]

    При разрастании трещин потенциалы увеличиваются пропор- ционально расстоянию между стенками, и происходят разряды, сопровождающиеся ионизацией газа или даже образованием плазмы [4]. Полагают, что поверхностная плотность зарядов при этом достигает 1 Кл/м [8]. [c.133]

    В интервале - 2 ускорение электронов, образовавшихся при ионизации, происходит до таких энергий, когда они могут вызывать ударную ионизацию газа-наполнителя Число электронов увеличивается в Н раз ( Н - коэффициент газового усиления), Н зависит от разности потенциалов V поэтому для получения пропорциональности между вели чиной импульса и энергией кванта необходимо жестко ста бнлизировать величину V. Б таком режиме рабе тают пропорциональные счетчики. Амплитуда импульса на 3-4 поряд1 а больше, чем в случае ионизационной камеры. При Н 10 возможно также возбуждение молекул газа с последующим излучением квантов с энергией в области коротковолнового ультрафиолета. Для предотвращения этого к основному одноатомному газу-наполнителю ( Аг, Кг, Хе ) добавляют многоатомные газы. [c.23]

    На нонизацпонном эффекте, производимом радиоактивным излучением, основан принцип работ следующих типов детекторов ионизационной камеры, пропорционального счетчика и счетчика Гейгера — Мюллера. Все эти детекторы представляют собой наполненные той или иной газовой смесью сосуды, которые имеют два электрода. Схема включения детектора показана на рис. 125. Механизм ионизации газов излучением различного типа и энергии не одинаков, но энергия, затрачиваемая на образование пары ионов во всех случаях составляет около 34 эв. Величина первичной ионизации, т. е. ионизация, производимая ядерной частицей непосредственно, зависит только от доли энергии, [c.334]

    При регистрации а- и р-часхиц счетчиком Гейгера — Мюллера каждая частица, попавшая в счетчик, дает лавинный разряд и регистрируется. Ионизация газа ннутри счетчика у-лучами маловероятна, более вероятно выбивание электронов фотоном из стенок счетчика, поэтому эффективность счетчика по отношению к у-лучам составляет 0,5—2%. [c.337]

    Мюллера О —VВ области напряжений О — амплитуда импульса тока возрастает пропорционально напряжению, так как с ростом напряжения снижается вероятность рекомбинации образующихся ионов или диффузии их из электрического поля. В области напряжений —11 все образующиеся ионы достигают электродов, процессы рекомбинации и диффузии практически отсутствуют. Эта область является областью работы ионизационной камеры. При напряжениях больше начинается вторичная ионизация газа, в процессе которой первично образовавшиеся ионы настолько ускоряются приложенным силовым полем, что сами вызывают образование вторичных ионных пар. Вторичная ионизация молекул газа в рабочей области пропорционального счетчика зависит от вида и энергии излучения. При напряжениях больше фактор вторичной ионизации лишь относительно пропорционален энергии и при напряжении U уже не зависит от вида и энергии излучения. Напряжение Иц называют гейгеровским порогом, между напряжениями расположена область работы счетчика Гейге- [c.307]

    Во многих случаях устойчивость аэрозолей увеличивается благодаря присутствию стабилизатора. Стабилизация при этом осуществляется путем приобретения электрического заряда или путем образования защитных слоев на поверхности частиц. Электрический заряд частиц возникает либо в результате адсорбции ионов-из газовой среды или за счет ионизации газа (воздуха) под действием ультрафиолетовых, рентгеновских и космических лучей, а также радиоактивных излучений либо, наконец, за счет трения. Знак заряда пылевых частиц зависит и от химического состава пыли и дыма основные вещества (СаО, ZnO, MgO, РегОз) дают отрицательно заряженные пыли, а кислые (SiOj, РгОб, а также уголь) — положительно заряженные. В отличие от гидрозолей частицы аэрозолей не имеют диффузного слоя ионов (слоя противоионов) кроме того, частицы в аэрозолях могут jie TH paMH4№ie по знаку и величине заряды или быть нейтральными. При этом наибольшую устойчивость проявляют аэрозоли с одноименно заряженными частицами. [c.350]

    При действии ядерных излучений на воздух молекулы составляющих его газов теряют свою электронейтральность образуются частицы, несущие положительные и отрицательные заряды — ионы. Это процесс ионизации газа. Последняя происходит путегл выбивания электрона у нейтральной молекулы газа, причем эта молекула приобретает положительный заряд — образуются положительные ионы. Электроны, оторванные от молекул, либо остаются свободными, либо присоединяются к другим молекулам газа — образуются отрицательные ионы. Ионизированный воздух отличается большой электропроводностью. [c.388]

    Ионизационные детекторы созданы на основе зависимости электропроводности ионизированной газовой среды от состава. Ионизация газа может быть осуществлена р-азличными путями. Отсюда и название ряда специальных детекторов пламенно-ионизационный (ионизация в пламени водорода), аргонно-ионизационный и т. п. В ионизационных детекторах существует равновесие между скоростью образования заряженных частиц и скоростью их рекомбинации на электродах детектора, которая и определяет так называемый ионный ток детектора. Введение анализируемого вещества нарущает существующее равновесие. [c.299]

    В последнее время все более широкое распространение получают специфические детекторы. Детектор электронного захвата в основном применяется для анализа малых примесей веществ, содержащих атомы с большим сродством к электрону, такие, как галогены, кислород, азот. При ионизации газа-носителя в детекторе образуется большое количество электронов, которые взаимодействуют с анализируемым веществом, что проявляется в уменьшении начального тока детектора. Чувствительность детектора зависит от природы и числа атомов, обладающих сродством к электро ну. Термоиопный детектор основан на ионизации в пламени солей щелочных металлов. Детектор хорошо анализирует соединения, содержащие фосфор. П л а м е н н о - ф о р-метрическнй детектор основан на измерении свечения водородного пламени. Детектор весьма чувствителен к фосфору и серусодержащим соединениям. [c.300]


Смотреть страницы где упоминается термин Ионизация газов: [c.62]    [c.164]    [c.58]    [c.323]    [c.487]    [c.300]    [c.301]    [c.128]    [c.154]    [c.251]    [c.22]    [c.52]   
Смотреть главы в:

Вакуумные аппараты и приборы химического машиностроения -> Ионизация газов

Ионизованные газы -> Ионизация газов


Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.186 ]

Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1055 ]

Основные процессы и аппараты химической технологии Издание 5 (1950) -- [ c.139 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.181 ]

Радиационная химия органических соединений (1963) -- [ c.25 ]

Производства ацетилена (1970) -- [ c.0 ]

Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.339 ]

Процессы и аппараты химической технологии Издание 5 (0) -- [ c.339 ]




ПОИСК







© 2025 chem21.info Реклама на сайте