Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Блэкмана реакция

    Теперь мы обратимся ко второму вопросу вызывает ли сопротивление в устьицах значительное ограничение в снабжении двуокисью углерода и тем самым в скорости фотосинтеза Закрытые устьица, несомненно, должны сократить фотосинтез сильнейшим образом, сводя его к использованию двуокиси углерода, которая достигает хлоропластов путем диффузии через кутикулу или образуется в листе в результате дыхания. Поэтому вопрос формулируется следующим образом насколько широко должны быть открыты устьица для того, чтобы не оказывать ограничивающего влияния на фотосинтез Могут ли эти ограничения быть значительны даже тогда, когда устьица полностью открыты Являются ли они узким местом , обусловливающим тип Блэкмана для многих кривых зависимости фотосинтеза от концентрации двуокиси углерода В предыдущей главе было показано, что ограничивающее влияние какой-либо ступени реакции обычно становится заметным задолго до того, как скорость всего процесса в целом подходит близко к потолку , налагаемому этой ступенью. Поэтому сопротивление устьиц может повлиять на форму названных кривых даже в том случае, если скорость фотосинтеза [c.331]


    Эта затянувшаяся дискуссия скорее задержала, чем способствовала проникновению в физиологию растений таких основных положений кинетики реакций и фотохимии, как закон действия масс, уравнения активации Больцмана и Аррениуса и квантовый принцип фотохимии, которые одни только могут дать достаточное основание для кинетического рассмотрения любой химической реакции, как in vitro, так и in vivQ. Ниже будет показано, что с точки зрения этих положений закон Блэкмана является просто идеализацией, к которой можно более или менее близко подойти при некоторых особых условиях. [c.271]

    Однако настойчивое утверждение, что настоящий лимитирующий фактор должен существовать при всех условиях, чуждо кинетике, изучающей ход реакций. Отношение между законом лимитирующих факторов и основными понятиями кинетики реакций было установлено Ромеллом в 1926 г. [20]. Он указал, что блэкмановский термин самый медленный фактор не имеет смысла и что можно говорить только о самом медленном процессе в последовательном ряду процессов. Скорость простой гомогенной реакции является обычно функцией всех наличных факторов, например концентраций всех реагирующих веществ, температуры и (в фотохимическом процессе) интенсивности света. Влияние лимитирования типа, предполагаемого Блэкманом, может существовать только в том случае, если реакция, у которой измеряется суммарная скорость, состоит из нескольких последовательных ступеней, причем одна ступень снабжает реагирующими веществами следующую. Если процесс снабжения идет медленно, он становится < узким местом и скорость суммарной реакции может стать не зависимой от всех факторов, которые не влияют на эту одну лимитирующую или определяющую скорость ступень. Простой пример этого представляют многие фотохимические реакции, в которых снабжение активированными молекулами является узким местом или лимитирующим процессом. Всякий раз, когда на практике получают кривые типа Блэкмана , можно считать, что здесь имеют дело с рядом последовательных реакций, в котором имеется, по крайней мере, одна ступень, лимитирующая максимальную производительность. В этом случае скорость суммарного процесса не может превзойти максимальную скорость прохождения системы [c.274]

    С другой стороны, невозможно принять второе утверждение Блэкмана о том, что линейно поднимающаяся часть световой кривой круто переходит в горизонтальную ее часть. Все точные наблюдения подтверждают, что световое насыщение достигается асимптотически, иногда в широком интервале интенсивности света (см. раннюю критику интерпретации Блэкмана Брауном и Хейзе [22, 25]). В гл. XXVI было показано (см. также фиг. 191), что неравномерности поглощения света, неизбежной даже в отдельных хлоропластах, не говоря уже о многоклеточных системах, самой по себе достаточно, чтобы сделать невозможным практическое наблюдение блэкмановских световых кривых, имеющих форму ломаных линий, даже если эти кривые правильно выражают отношение между интенсивностью света и скоростью фотосинтеза в равномерно освещенном элементе объема. Однако на основании общих законов кинетики реакций можно показать, что даже в идеальном случае полностью равномерного поглощения света блэк-мановские ломаные линии являются только первым приближением, более или менее удовлетворительным в зависимости от специфических конкретных условий. [c.386]


    ОДИН только хлорофилл участвует в световой реакции и если поглощенная им энергия передается какому-то СОг-содержа-щему соединению (как принято думать и в настоящее время), то при уменьщении концентрации СО2 максимальный выход фотосинтеза на вспыщку не должен снижаться просто для достижения этого выхода потребуется при данной концентрации СОо более длинный темновой период. Между тем опыт, поставленный для проверки этого предположения, показал ( фиг. 103), что увеличение продолжительности темнового периода при низкой концентрации СО2 не обеспечивает того выхода фотосинтеза, который можно получить при более высоких концентрациях. Отсюда было сделано заключение, что СО2 вовлекается в фотосинтез до фотохимической реакции или одновременно с ней (ср. соображения, высказанные в 1960 году Варбургом разд. В). Поскольку световой период в 10 мкс казался недостаточным для того, чтобы молекулы СО2 могли занять соответствующее положение и вступить в реакцию с хлорофил- иом, было высказано предположение, что СО2 сначала соединяется с хлорофиллом в темноте, а световая вспышка активирует молекулы соединения хлорофилл — СО2, которые затем участвуют в реакции Блэкмана. В результате этой реакции хло- рофилл освобождается и может реагировать с новыми молекулами СО2, так что процесс носит циклический характер. [c.234]

    В 1932 году Эмерсон и Арнольд [76] пришли к выводу, что фотосинтез (восстановление двуокиси углерода) состоит из световой реакции, не зависящей от температуры и протекающей в течение 10 с, и из темновой реакции, которая при 25° С за-верщается в течение 0,02 с. Далее указанные авторы рассмотрели вопрос о световом насыщении в условиях прерывистого света, когда длительность темновых интервалов была достаточной для заверщения реакции Блэкмана между вспышками [77]. Если интенсивность вспышки достигала значения, при котором дальнейшее ее увеличение уже не вызывало увеличения скорости фотосинтеза, то это должно было означать, что каждая единица хлорофилла, способная участвовать в фотохимическом процессе, в течение вспышки успевала прореагировать. При этом предполагалось, что такая единица реагирует лишь однажды при длительности вспышки 10 мкс (поскольку продолжительность темновой реакции значительно больше). Исходя из всего этого, была сделана попытка экспериментально найти число молекул хлорофилла в подобной единице. Последняя определялась как механизм, который, в результате участия в фотохимической реакции осуществляет восстановление одной молекулы двуокиси углерода . Если, например, каждая молекула хлорофилла способна поглощать квант света и связана с ферментами, необходимыми для ее участия в реакции восстановления, то число молекул хлорофилла в рассматриваемой единице должно быть равно квантовому расходу, т. е. числу квантов, расходуемых на восстановление одной молекулы СО2. Вслед за Варбургом и Негелейном [309] Эмерсон и Арнольд считали, что эта величина равна 4. В дальнейшем квантовый расход стали принимать равным 10—12, что согласуется с общепринятой теоретически минимальной величиной 8 (поскольку неизбежны тепловые потери и стопроцентная эффективность невозможна). [c.275]

    Блэкмана как указание на то, что процесс фотосинтеза состоит из реакций двух типов световых реакций и блэкмановских (теперь их [c.76]

    Аля выяснения характера реакций, y4a TByiOiwx в фотосинтезе, особенно много дали исследования по изучению зависимости этого процесса от температуры. Работами Маттэи ( Mattixaei, 1904) в лаборатории Блэкмана ( Bla kman ) впервые было доказано, что QjO фотосинтеза в ряде случаев значительно больше I и достигает 2.I-2.5, что свидетельствует об участии в процессе фотосинтеза темновых реакция, скорость протекания которых зависит от температуры. [c.12]

    Наличие в процессе фотосинтеза темновых реакций было подтверждено и работами Блэкмана по действию ограничивающих факторов на фотосинтез ( в1аскшап, 1905). №( показано, что когда интенсивность фотосинтеза больше не увеличивается ни при повышении освещенности, ни при поюшении уровня Og, усиление ее может быть вызвано повышением температуры. Блэкман первый шска-зал предположение о том, что в процессе фотосинтеза кроме световой имеется и темновая независимая от света фаза, которая и была названа "реакцией Блэкмана". [c.12]

    Изучая температурные кривые фотосинтеза, Ф. Блэкман впервые установил, что при температурах в пределах 20—30° С в зависимости от вида растения фотосинтез следует, в общем, правилу Вант-Гоффа, согласно которому скорость химических реакций возрастает с повышением температуры на 10° С в 2—2,5 раза. При более высоких температурах, разных для разных растений, наблюдается перелом кривых фотосинтеза, которые начинают опускаться круто вниз. Поскольку на скорость фотохимических процессов изменения температуры влияния почти не оказывают результаты наблюдения Блэкмана также подчеркивали наличие в фотосинтезе реакций не только фотохимических, но и фермен-тативны.ч (биохимических). [c.141]


Смотреть страницы где упоминается термин Блэкмана реакция: [c.283]    [c.201]    [c.233]    [c.235]    [c.76]   
Биохимия растений (1968) -- [ c.75 , c.76 ]




ПОИСК







© 2025 chem21.info Реклама на сайте