Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод распространенность

    Распространённость элементов во Вселенной представляет важную проблему как физического, так и философского характера. Изотопы необходимы для конструирования различных объектов во Вселенной по аналогии с инженерным конструированием, нуждающимся в деталях слегка различающихся размеров. Так, стабильные изотопы выглядят как некоторые фрагменты, возникшие в процессе эволюции нашей Вселенной (можно представить себе другие вселенные с совершенно отличным изотопным составом). Например, в некоторых углеродных звёздах относительная распространённость изотопов углерода, = 3,4, сильно отличается от распространённости изотопов [c.11]


    Современную ситуацию на рынке изотопов можно проиллюстрировать на примере двух широко распространённых изотопов, используемых в медицине стабильного изотопа углерода-13 и радиоактивного — молибдена-99. [c.13]

    Метод космических лучей, который пригоден только для Солнца, состоит в измерении относительной распространённости различных элементов, включая а-частицы, в солнечных космических лучах. Линии гелия в спектре Солнца (которое для их образования является холодной звездой) слишком слабы, чтобы использовать их для определения обилия. Вместо этого используется тот факт, что после сильной солнечной вспышки сгусток космических лучей низкой энергии достигает Земли. Распространённость ск-частиц по отношению к обычным изотопам углерода, азота и кислорода в этих космических лучах отражает их распространённость на поверхности Солнца, так как все эти элементы имеют одно и то же отношение заряда к массе и поэтому одинаковым образом ускорялись. Этот метод вновь для отношения Не/Н даёт значение 1/11. [c.50]

    Химическая коррозия протекает при металлургическом производстве и термической обработке тaJ eй и сплавов при работе деталей и конструкций в двигателях внутреннего сгорания, в энергетических установках, в нагревательных печах, осветительных приборах и т.д. К ианболее распространённым случаям. химической коррозии в жидких неэлектролитах относится коррозия в расплавленной сере, многих жидких органических веществах, таких,как четырёххлористый углерод, бензол, хлороформ, жидкое топливо (бензин, керосин, нефть и т.д.), некоторые масла /3/. Коррозионная активность, например, обезвоженных нефти и газа определяется в основном содержанием в них меркаптанов (Я-8-К ) и тиоспиртов (К-5Н), сероводорода и элементарной серы с образованием соответственно меркаптидов или [c.13]

    Одной из интригуюш,их особенностей в зависимости распространённости элементов от их атомного номера является, как известно, резкий провал при переходе от лёгких элементов к тяжёлым — область лития, бериллия, бора и далее к углероду. Этот провал связан с тем, что синтез лёгких элементов осуш ествляется путём парных столкновений между нуклонами и ядрами с по-следуюш,им /3-распадом внутри звёзд (1 + п Т — Не + п Не. Парный механизм синтеза обрывается на симметричном ядре гелия Не, поскольку ядро Не не суш,ествует и с его помощью невозможен переход к тяжёлым нуклидам. Таким образом, согласно схеме парных столкновений тяжёлые элементы должны отсутствовать во Вселенной, а Вселенная без углерода, железа и т. д. не содержит органических соединений и, следовательно, биологической жизни. Парадокс преодолевается с помощью известной трёхчастичной схемы синтеза ядра углерода из трёх а-частиц (реакция Солпитера) Зек которая открывает возможности синтеза тяжёлых элементов. [c.10]


    Основным физическим методом, использованным при открытии изотопов стабильных элементов, стал метод катодных лучей, впервые применённый для анализа масс элементов Дж.Дж. Томпсоном — метод парабол [5. Исследуя газовую составляющую воздуха, Томпсон в 1913 году впервые наблюдал раздвоение на фотопластинке параболы, описывающей массы атомов инертного газа неона, что было невозможно объяснить присутствием в катодных лучах какой-либо с ним связанной молекулярной составляющей. Война прервала эти работы, но сразу с её окончанием Ф. Астон, работавший до войны с Томпсоном, вернулся к этой тематике и, критически пересмотрев метод парабол, сконструировал первый масс-спектрограф для анализа масс изотопов, имевший разрешение на уровне 1/1000 [6. В 1919 году он использовал новый прибор для исследования проблемы неона и показал, что природный неон является смесью двух изотопов — Ые-20 и Ме-22 [7], так что его химический атомный вес 20,2 (в единицах 1/16 массы кислорода), отличный от целого числа 20, можно объяснить, предполагая, что естественный неон — смесь двух изотопов, массы которых близки к целым числам, смешанных в пропорции 1 10. Тем самым Ф. Астон впервые убедительно экспериментально доказал принципиальное существование изотопов стабильных элементов, которое уже широко дискутировалось в то время в теоретических работах В. Харкинса в связи с проблемой целочисленности атомных весов [8]. Получив прямое подтверждение существования изотопов неона, Астон вскоре на том же приборе, развивая успех, показал сложный изотопный состав хлора, ртути, аргона, криптона, ксенона, ряда галогенов — иода, брома, нескольких элементов, легко образующих летучие соединения — В, 51, Р, 5, Аз, и ряда щелочных металлов — элементов первой группы таблицы Менделеева. Он также зафиксировал шкалу масс ядер, положив в её основу кислород (0-16) и углерод (С-12), в то время считавшихся моноизотопными, и провёл сопоставление их масс. К концу 1922 года им были найдены наиболее распространённые изотопы около трёх десятков элементов (см. табл. 2.1), за что 12 декабря 1922 года он получает Нобелевскую премию. Несколько раньше (1920) он, проанализировав первый экспериментальный материал, формулирует эмпирическое правило целочисленности атомных весов изотопов в шкале 0-16 [9]. В 1922 году в исследовании изотопов к нему присоединился А. Демпстер, предложивший свой вариант магнитного масс-спектро-метра с поворотом исследуемых пучков на 180 градусов [10]. Он открыл основные изотопы магния, кальция, цинка и подтвердил существование двух изотопов лития, найденных перед этим Ф. Астоном и Дж.П. Томпсоном (табл. 2.1). [c.39]

    Наблюдаемые распространённости ядер loNe , llNa и l2Mg хорошо согласуются с рассчитанными на основе сгорания С (при Т и 10 К), что подтверждает их углеродное происхождение [62]. Вслед за углеродом по мере возрастания температуры (что необходимо для преодоления кулоновского барьера) начинает перегорать кислорода, главным образом в кремний и серу  [c.70]

    В связи с тем, что углерод очень распространён в природе и входит в состав многих реагентов и конструкционных материалов, проведение операций получения СО2 и особенно синтеза товарного ВаСОз, обогаш,ённого изотопом С, потребовало специальной подготовки реагентов и оборудования для предотвращения возможного загрязнения и изотопного разбавления. В результате на этапе синтеза СО2 достигнутый выход реакции по активности радионуклида составляет около 94%. [c.537]

    Углерод — один из самых распространённых элементов во Вселенной и основа существования жизни на Земле. В природе распространены три изотопа — два стабильных и и один радиоактивный Их соотношение примерно таково — 98,89%, — 1,11%, а количество в современном органическом веществе в 10 (т.е. в триллион раз) меньше, чем 12с, а в древней органике в 10 — 10 раз меньше. Равновесное количество I на Земле составляет всего около 60 т (Faure, 1991). [c.567]


Смотреть страницы где упоминается термин Углерод распространенность: [c.329]    [c.126]   
Справочник по общей и неорганической химии (1997) -- [ c.9 ]

Основы общей химии Том 3 (1970) -- [ c.257 , c.258 ]




ПОИСК







© 2024 chem21.info Реклама на сайте