Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопы относительная распространен vгь

    При изучении обратно рассеянных р-частиц на большом р-спектрометре мы обнаружили большие энергетические потери в более легких элементах и несколько меньшие — в тяжелых. Экспериментальные данные по относительному обратному рассеянию, полученные на этом прецизионном приборе, еще раз подтверждают вывод о зависимости обратного рассеяния от и ее линейности в каждом периоде. Данные результаты, кажется, говорят о том, что уменьшение энергии А , умноженное па среднее число р-частиц, также измененное, остается постоянным. Это трудно установить с высокой точностью, однако можно почти определенно утверждать, что полная энергия, потерянная в процессе обратного рассеяния, не зависит от Ъ. Часто можно слышать, как, говоря об изотопе, называют его чистым р-излучателем , и это подтверждается каталогами тех предприятий, которые производят и распространяют радиоизотопы. Однако все такие источники наряду с Р-частицами создают внутреннее тормозное излучение. Так как многие р-излучающие изотопы являются продуктами деления, они, вероятно, содержат как р-, так и у-излучающие примеси. [c.234]


    Органические ионы, а натрий и хлор составляют менее 10%. Нас не удивляет присутствие органических ионов, так как мы знаем, что клетка представляет собой как бы химический завод, вырабатывающий различные органические вещества. Но как объяснить предпочтение, отдаваемое нервной клеткой калию перед натрием На этот счет имеется ряд теорий, но все же мы пока далеки от окончательного понимания этого явления. Естественно было бы предположить, что калий обладает особым химическим сродством к веществам клетки и прочно связывается с какими-то белками. Однако на самом деле это не так. Дело в том, что ионы калия должны присутствовать в клетке в свободном состоянии иначе было бы трудно объяснить, почему внутренняя часть клетки обладает относительно высоким осмотическим давлением и относительно высокой электропроводностью. Физиологи А. Ходжкин и Р. Кейнс продемонстрировали подвижность ионов калия с помощью радиоактивного изотопа этого элемента. Они наносили на нервное волокно небольшую каплю жидкости, содержащей радиоактивный калий, и давали меченым атомам войти в волокно. На это, между прочим, уходило очень много времени во много тысяч раз больше, чем на процесс простой диффузии. Очевидно, ионы на пути из окружающего раствора в волокно должны были преодолеть какой-то барьер. Но как только меченые ионы попадали наконец в волокно, они начинали распространяться по нему со скоростью, характерной для обычной свободной диффузии, т. е. вели себя как свободные, несвязанные ионы. Были поставлены новые опыты, в которых разность потенциала прилагали вдоль оси и определяли скорость, с которой меченые ионы двигались к катоду. Результаты этих опытов подтвердили, что ионы калия внутри волокна ведут себя как свободные частицы, несущие электрический заряд, и передвигаются здесь без препятствий. [c.242]

    Только первые шесть членов группы актинидов (т. е. актиний, торий, протактиний, уран, нептуний и плутоний) встречаются в природе. Актиний и протактиний являются продуктами распада мало распространенного в природе изотопа — уран-235, поэтому их содержание в минералах урана невелико. Методы их получения из природных источников очень трудоемки и продолжительны по сравнению с относительно легким синтетическим методом, с помощью которого, однако, можно получить лишь небольшие количества этих элементов. Торий и уран широко распространены в земной коре и находятся в сочетании с другими элементами. Значительные количества урана содержатся также в океанах и морях. Извлечение указанных двух элементов из их руд было подробно изучено и разработано благодаря их важному значению при использовании ядерной энергии. Нептуний и плутоний, встречающиеся в природе в небольших количествах, образовались в урановых рудах путем захвата нейтронов. Получение нептуния и плутония из этих источников не осуществимо вследствие чрезвычайно малого их содержания в рудах. [c.101]


    Большая устойчивость ядер с заполненными уровнями проявляется не только в большем числе четно-четных ядер, но также в их большей распространенности в природе по сравнению с другими типами ядер. В среднем элементы с четными 2 значительно более распространены, чем элементы с нечетными Z (примерно в 10 раз). У элементов с четными Z относительные количества изотопов с четными массами (четные Щ составляют обычно 70—100% (за исключением бериллия, ксенона и диспрозия). [c.50]

    Пробы и стандартные образцы, подготовленные к облученгао, помещают в цилиндрические алюминиевые или полиэтиленовые контейнеры диаметром 15-20 мм и длиной 150-200 мм. Продолжительность облучения зависит от состава определяемых элементов и периода полураспада образующихся нуклидов. Для повышения чувствительности обычно используют относительно короткоживущие изотопы. Так, определение ртути проводят по Hg (Т /2 = 64,1 ч), а не по (Т /2 = 46,6 сут.). Применение короткоживущих радионуклидов привлекательно еще и тем, что анализ осуществляется за короткое время Кроме того, малая продолжительность облучения позволяет избежать заметной активации мешающих элементов Однако из-за быстрого уменьшения активности измерения необходимо производить вблизи источников нейтронов, что не всегда возможно Наиболее распространены методы нейтронно-активационного анализа на основе средних и долгоживущих изотопов с Т)/2 > 2-3 сут Продолжительность облучения проб природных сред в этом случае равна 10-30 ч, иногда нескольким суткам. Для природных вод оптимальное время вьщержки проб в реакторе составляет 10-50 сут. [112 . При этом возможно определение элементов в пробах воды на уровне следующих концентраций  [c.312]

    Были предложены два таких стандарта. Первый из них был предложен Ниром [1514] и Команом, Маттаухом и Вапстра [1148, 1149, 1339, 1340]. За единицу была принята величина в 1,000318 и 1,000043 раза больше единицы, существующей в физической и химической шкалах масс соответственно. Использование нового стандарта вызвало бы незначительное изменение в существующих значениях химических атомных весов. Предлагаемый стандарт обладает преимуществами главным образом с точки зрения масс-спектрометрии. используется в качестве дополнительного стандарта, так как образует столько различных соединений с водородом, что почти всегда удается провести сопоставление масс изотопов с комбинацией атомов водорода и углерода исключение составляет лишь область низких масс. Так, в диапазоне масс 18—23 получить углеводородные ионы трудно. Универсальность применения соединений углерода в качестве стандарта детально рассмотрена ниже. В качестве химического стандарта углерод менее пригоден поэтому предлагается в химической шкале атомный вес кислорода принимать как массу О с коэффициентом 1,000275. По сравнению с кислородом тяжелые изотопы углерода более распространены природное соотношение изотопов может изменяться, поэтому новое определение не приведет к точному значению для атомного веса элемента-стандарта, и возникнет много трудностей, таких же как и в случае кислорода. Кроме того, углерод взаимодействует с относительно небольшим числом других элементов, в частности не со всеми элементами, используемыми в качестве химических стандартов. [c.43]

    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]


    Определение малых отклонений в относительной распространенности изотопов для разных образцов облегчается использованием стандартного образца. Измерение распространенности изотопов в эталонном образце до и после анализа исследуемого образца позволяет оценить случайные ошибки последовательных измерений и величину медленного дрейфа в показаниях прибора. Еще одним методом повышения чувствительности прибора пррс измерении малых изменений относительной распространенности изотопов служит применение двухколлекторной системы, в которой изучаемые изотопные ионы одновременно собираются на отдельных электродах. Этот метод был впервые предложен Астоном [78] и применен Штраусом [1960] для измерения относительных распространенностей изотопов никеля. Измерение распространенности производилось непосредственно нуль-методом. Один из коллекторов ионов находился в фиксированном положении, а другой мог перемещаться при помощи сильфонного микрометрического винта. Такая система может быть использована в широком диапазоне отношений масс изотопов. Разделение при измерении никеля устанавливается в диапазоне двух массовых чисел (измерение изотопов с четным массовым числом) либо трех массовых чисел (измерение отнопкния N1 Применение двойного коллектора позволило Штраусу использовать искровой источник быстрые колебания в интенсивности не оказывали влияния на регистрацию отношения ионных токов. Горман, Джонс и Хиппл [776] распространили этот метод на получение полного масс-спектра в их масс-спектрометре измерялось отношение интенсивности пиков данных ионов к полному ионному току. Суммарная интенсивность ионных токов регистрировалась при помощи электрода, помещенного у входа в магнитный анализатор. Аналогичную [c.96]

    Из.83 известных элементов в XIX в. находили промышленное применение 47, до 1920 г. — 54, к 1950 г. из 98 известных элементов использовались 86. В некоторых направлениях технического, биологического и другого характера находят применение и изотопы. Так в текушем семилетии в Советском Союзе будут выпускаться сотни химических соединений, содержащих меченые атомы, в большей части в виде искусственных изотопов. Основным критерием в использовании элементов являлась их концентрация в недрах земли. Именно этим объясняется тот факт, что углерод, общие запасы когорого 0,35% (весовых), медь, запасы которой 0,01%, цинк —0,02%, а свинца и золота и того меньше, благодаря их скоплению в определенных месторождениях в достаточно больших количествах используются в продолжении огромного периода времени. В то же время есть такие элементы, как рубидий, цирконий и др., которые благодаря их рассеянности, начали использоваться в промышленности относительно недавно. В настоящее время наметилась следующая тенденция в смысле промышленного использования различных элементов. Стали широко осваиваться те из них, которые более распространены в природе, как, например, кислород, количество которого досги- [c.24]

    Все же уместно кратко указать сейчас, что, вероятно, Аг о отчасти обогащался за счет /(Г-захвата в изотопе Ю , некоторые ядра которого путем -распада превращаются в Са . Что касается теллура 52 6, то в нем аномально сильно распространены тяжелые изотопы 1М и 130 (соответственно 31,79% и 34,49%), обусловливая известную аномалию веса по отношению к иоду. Согласно работе И. П. Селинова [2], аномально высокая концентрация Те и Те возможно связана с дополнительным обогащением этих изотопов за счет продуктов деления. Наконец, в случае пары Со — N1 представляется возможным объяснить наибольшую относительную рас-нространенность N1 (67,76%) в ущерб более тяжелому изотопу (26,16%) некоторой индивидуальной особенностью ядра N1 , являющегося маги- [c.72]

    АТОМНЫЙ ВЕС — среднее значение массы атома химич. элемента, выраженной в относительных единицах. У анизотопного элемента, т. е. элемента, представленного только одним природным изотопом, все атомы имеют одинаковую массу, с к-рой и совпадает А. в. У элемента, состоящего из нескольких природных изотопов, А. в. определяется изотопными массами, взятыми в той пропорции, в к-рой эти изотопы составляют данный элемент. Вариации в природном изотопном составе химич. элементов крайне незначительны (см. И.чотопы) поэтому каждый элемент, если он искусственно не обогащен каким-либо из изотопов, имеет практически постоянный А. в. В качестве единицы А. в. в современной химии принята часть средней массы атома природного кислорода, к-рый состоит из изотопов 01 , и 01 , содержащихся в отношении 2667 1 5,5 (для Oj воздуха). А. в элементов, выраженные в этих единицах, составляют химическую шкалу А. в. Кроме химической, распространена также физическая шкала, в к-рой за единицу А. в. принята i/u часть массы изотопа О . Как правило, во всей химич. литературе и, в частности, в настоящем издании А. в. элементов, если это специально не оговорено, приводятся по химич. шкале. [c.164]


Смотреть страницы где упоминается термин Изотопы относительная распространен vгь: [c.379]    [c.47]    [c.55]    [c.241]   
Химия и периодическая таблица (1982) -- [ c.38 ]




ПОИСК







© 2025 chem21.info Реклама на сайте