Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсолютный выход сложной реакции

    Следует отметить, что с помощью рециклов можно повысить абсолютный выход любого продукта сложной химической реакции. Особенно важно то, что этого не может дать ни один из таких традиционных способов управления химической реакцией как изменение давления, температуры и других параметров, так как они в той или иной степени действуют на все реакции, а рециклы, свободно оперируя скоростью и составом потока, направляют реакцию в желаемую сторону в максимально возможной степени [45]. [c.126]


    Как было отмечено, варьируя параметрами рециркуляции, можно одновременно повысить мощность реактора по сырью и абсолютный выход любого продукта сложной реакции. Этого не может дать ни один из таких регулируемых параметров, как время, температура, давление, ибо они в той или иной степени одновременно действуют на все реакции, а рециркуляция, свободно оперируя скоростью рециркулирующего потока и его составом, направляет реакцию в желаемую сторону в максимально возможной степени. [c.9]

    Третий — в случае, когда катализатор и реагенты процесса известны, точнее, зафиксированы, повысить оптимальность его можно за счет рециркуляции, т. е. использованием преимуществ, создаваемых обратной связью. Варьируя параметрами рециркуляции, можно повысить и мощность реактора по сырью, и абсолютный выход целевых продуктов сложной реакции. Это — технологический подход. [c.11]

    Оказалось, что зависилюсть направления реакции от щелочности среды имеет сложный характер и изменения в выходе 2-нафтол-1-сульфокислоты не связаны с переходом 2-нафтола в растворимый нафтолят. Во всех опытах абсолютный выход сульфокислоты был невелик. Варьирование относительного содержания соли сернистой кислоты и телшературы реакции не привело к увеличению выхода. Даже при одновременном повышении температуры [c.10]

    Таким образом, если в результате некой сложной реакций мы получае.м различные продукты, то под влиянием катализатора может измениться не только абсолютная величина выхода каждого продукта, но могут оказаться измененными и относительные выходы этих различных продуктов. Примером может служить [c.10]

    Хорошие результаты можно получить также и без применения хлористого аммония или двуокиси углерода, если проводить реакцию в среде инертных растворителей, таких, как эфиры или углеводороды. Для этой цели чаще всего применяют ксилол, который имеет высокую температуру кипения. Натрий нагревают в ксилоле, доводя последний до температуры кипения и сильно встряхивая. Затем к колбе присоединяют обратный холодильник (большой длины, как указано выше) и быстро приливают раствор сложного эфира в небольшом количестве абсолютного спирта. Реакционную смесь нагревают 1—2 часа на масляной бане при температуре 150°, охлаждают, добавляют 96%-ный спирт для связывания не вошедшего в реакцию натрия и разбавляют водой . Сильно разбавляя смесь инертным растворителем, можно уменьшить избыток натрия и спирта до 5% без опасения, что образуются продукты конденсации выходы составляют 80—95% . [c.493]


    Сложные эфиры нитро-(или амино-) бензойной кислоты и ее производных могут быть получены нагреванием соответствующей карбоновой кислоты с абсолютным спиртом в присутствии серной кислоты или хлористого водорода [ ], при нагревании серебряной соли кислоты с галоидалкилом в запаянной трубке [ ] из хлорангидрида кислоты и спирта. Мы использовали в основном первый метод однако в ряде случаев обращались и к другим. Для получения бутилового эфира 4-нитро-2-хлорбензойной кислоты была использована реакция конденсации бутилового спирта с хлорангидридом кислоты, бутиловые эфиры -4-амино-2-хлорбензойной кислоты и 5-аминосалициловой кислоты были получены как этерификацией аминокислот, так и восстановлением эфиров соответствующих нитрокислот. Все эфиры получены с удовлетворительным выходом, 70—80 /о от теоретического. Несколько ниже выход бутиловых эфиров 5- и 4-аминосалициловой кислот, что,, очевидно, связано со сравнительно легкой окисляемостью этих соединений. Дибутиловые эфиры 5-нитро- и 4-нитросалициловой кислот были получены нагреванием соответствующего монобутилового эфира с бромистым бутилом. Известно Р ], что этерификация фенольного. гидроксила значительно затрудняется наличием -расположенной карбоксильной группы, а также наличием нитрогрупп в ядре [ ]. В описываемом нами случае, для получения удовлетворительного выхода (приблизительно 90% от теоретического) конденсация проводилась, в сравнительно жестких условиях в запаянной трубке при 190—200°  [c.504]

    Ввиду большого числа (порядка 60) элементарных реакций, в которых принимают участие индивидуальные компоненты, правые части уравнений системы (И.34) оказываются сложными. При выборе метода ее решения важной особенностью данной системы является то, что в уравнения входят мольные выходы компонентов j и константы скоростей элементарных реакций Кч (Т), абсолютные величины которых различаются между собой на десять и более порядков. [c.45]

    Восстановление карбоновых кислот в спирты с тем же количеством атомов углерода происходит с большим, трудом, однако оно может быть легко осуществлено, если действовать натрием на эфиры этих кислот в присутствии спирта . Классический метод проведения этой реакции заключается в следующем к кипящему раствору сложного фцра в абсолютном спирте, помещенному в колбу с эффективным обратным холодильником, добавляют металлический натрий (кусками), взятый в избытке (на 50% больше теоретически необходимого). Смесь кипятят несколько часов до полного растворения натрия и добавляют воды для разложения образующегося алкоголята натрия и возможных следов эфира. Спирт отгоняют, а продукт реакции из оставшегося водного раствора извлекают эфиром. При проведении реакции очень важно, чтобы и сложный эфир и применяемый в качестве растворителя в большом избытке спирт были совершенно безводными. Следы воды вызывают гидролиз сложного эфира, вследствие чего выход продуктов реакции сильно снижается, так как свободные кислоты в этих условиях не реагируют. Натрий следует добавлять по возможности быстро, так как только быстрое течение реакции обеспечивает хороший выход спирта. Реакция сильно экзотермична— около 125 ктл на 1 моль сложного эфира, поэтому при добавлении натрия смесь бурно кипит. Чтобы избежать улетучивания спирта и захлебывания холодильника, а также вытекающей отсюда опасности выброса спирта наружу (с натрием ), применяют очень большие обратные холодильники длиной 1,5—2 м, с большим поперечным сечением, что позволяет вводить натрий в виде крупных кусков. При введении натрия колбу часто приходится охлаждать льдом. [c.492]

    Филипс и Бальци осуществили миграцию ацильной группы от N к О в следующих условиях. Этаноламид бензойной кислоты обрабатывался 3,3 н. раствором хлористого водорода в абсолютном спирте в течение 1 недели при комнатной температуре. Выход солянокислой соли аминоэтилбензоата составил 65%. В отличие от неполной и медленной миграции ацила от N к О обратная реакция протекает мгновенно и практически количественно. Так, через 2 мин после титрования соединения XVI до pH ГО и обратного титрования до pH 5 95% сложного эфира перегруппировывается в амид. Попытка провести ацильную перегруппировку в разбавленной соляной кислоте (0,04 н.) оказалась неудачной. [c.217]

    Отсюда следует, что максимума не будет, если р,. не отрицательная величина-и не большая по абсолютному значению, чемр , которая должна быть положительной. Противоположные условия будут вызывать минимум. Конечно, максимум или минимум могут выходить далеко за реальные значения о. Несколько примеров приведены на рисунке. Большинство реакций конденсации дают линейную зависимость Гаммета, в том числе те, которые имеют стадию, определяющую скорость. Огата [83] нашел значение 2,25 для р в конденсации Перкина. Нойс приписывает слабое влияние заместителей на скорость катализируемой кислотой конденсации метилэтилкетона с бензальдегидом противоположным воздействием на их основность альдегида и на скорость атаки енола протонированными формами [104]. Скорость катализируемой пиперидином конденсации диэтилмалонового эфира с бензальдегидом в керосине пли изопропиловом спирте понижается как положительными, так и отрицательными заместителями, возможно, согласно уравнению (27) [105]. С другой стороны, максимум может быть результатом нелинейных зависимостей Гаммета [106] для нескольких стадий в сложном механизме, если даже есть стадия, определяющая скорость (см-рисунок). [c.173]


    Сложный эфир растворяют в 3—4-кратном по весу количестве абсолютного спирта и прибавляют к 1,5-кратному против теории количеству натрия (т. е. 6 г-атомов натрия на моль эфира). Наступает очень бурная реакция. Для завершения восстановления реакционную смесь нагревают на водяной бане. Для эфиров жирных кислот, кроме муравьиной, получают обычно хорошие выходы соответствующих спиртов эфиры ароматических кислот не восстанавливаются эфиры оксикислот также не восстанавливаются гладко эфиры двуосновных кислот могут быть восстановлены до соответствующих гликолей. Как показали наблюдения В. В. Лопгинова, решающим условием для получения хороших результатов при реакции Буво — Блана является чистота натрия небольшая примесь калия парализует реакцию восстановления. Исследования советского химика Дзиркала [И] показали, что при содержании 0,1% калия в натрии восстановление практически уже ве идет совсем. Однако дальнейшее увеличение содержания калия уже благоприятствует нормальному течению реакции, а сплав натрия о 2% калия равноценен химически чистому натрию. [c.600]

    Образование амидной связи. Лучшим растворителем для реакции образования амидной связи является абсолютный этилацетат. При использовании гидроксилсодержащих растворителей выходы бывают низкими, а в бензоле, хлороформе, диоксане и ацетонитриле реакция протекает сравнительно медленно. Этиленгликоль, который обычно является катализатором аминолиза сложного эфира, уменьшает скорость аминолиза цианметилового эфира гиппуровой кислоты [302]. В идентичных условиях М-бензилгиппуриламид был получен из цианметилового эфира гиппуровой кислоты в этилацетате с выходом 82%, в метиловом спирте — с выходом 60%, в смеси этиловый спирт — вода (1 -))—с выходом 56% и в смеси диметилформамид — вода (2 3)—с выходом 74% [316]. [c.254]

    Измерение возрастания температуры системы является более прямым методом дозиметрии. Он непригоден в тех случаях, когда при облучении протекает химическая реакция, тепловой эффект которой невозможно вычислить. Поэтому целесообрглзнее применять этот метод дозиметрии к радиационноустойчивым системам, используя затем полученные результаты для вычисления дозы, соответствующей облучению данной конкретной системы (см. стр. 58). Калориметрическое определение дозы экспериментально сложно и потому для повседневных измерений применяется редко. Однако оно представляет собой полезный метод калибровки вторичных стандартов. Так, например, этим методом определено поглощение энергии излучения в водных растворах сернокислой закиси железа, и таким образом установлено абсолютное значение радиационно-химического выхода окисления ионов закисного железа. Полученная цифра хорошо согласуется с результатами измерения другими методами. Фер-росульфатный дозиметр нашел сейчас широкое использование в качестве вторичного дозиметра (см. стр. 60). [c.56]

    Оптический выход реакции с вторичными циклическими спиртами (например, борнеолом) относительно низок, и, поскольку вещества этого типа обычно включают несколько асимметрических атомов, результаты трудно интерпретировать с точки зрения абсолютной конфигурации. Стерическое действие здесь обязано общей конформации молекулы, а не окружению одного асимметрического атома углерода. Ниже приведен оптический выход (в %) (-f)-атролактиновой кислоты при реакции метил-магнийиодида с сложными эфирами фенилглиоксиловой кислоты с некоторыми атропоизомерными спиртами  [c.174]

    Используя реакцию Симмонса—Смита, возможно провести частичный асимметрический синтез, поскольку перенос метилена цинковым реагентом не нарушает оптические центры, примыкающие к двойной связи [434]. Учитывая это обстоятельство и способность реагента к координированию с кислородсодержащими функциями наряду с высокой стереоселективностью переноса метилена образующимся комплексом, возможно наведение опт)тческой активности и получение оптически активных циклопропанкарбоновых кислот при введении в реакцию оптически активных сложных эфиров непредельных кислот. Так, было показано, что (—)-ментиловые эфиры многих а,р-ненасы-щенных или даже р,7-пенасыщенных кислот дают правовращающие цикло-пропанкарбоновые кислоты [442]. В табл. 7 приведены общий и оптический выходы, абсолютная конфигурация циклопропанкарбоновых кислот, образующихся при циклопропапировании цинковым реагентом (—)-ментиловых эфиров некоторых непредельных кислот. Эти результаты подтверждают принятый одностадийный механизм переноса метилена и исключают двухстадийный механизм. Для комплекса реагент—субстрат в переходном состоянии принято следующее строение типа бицикло[3,1,0]структуры с цисоидной конформацией двойной связи. [c.62]


Смотреть страницы где упоминается термин Абсолютный выход сложной реакции: [c.402]    [c.254]    [c.175]    [c.144]    [c.468]    [c.133]    [c.175]    [c.175]    [c.83]    [c.644]    [c.204]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.10 , c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Абсолютный выход

Выход сложной реакции

Реакции сложные

Сложные реакции абсолютный выход продукта



© 2025 chem21.info Реклама на сайте