Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембрана для обратного осмоса жидкие

    Процессы мембранного разделения с использованием обратноосмотических мембран однотипны. Исходную разделяемую жидкость насосом под давлением прокачивают с определенной скоростью над рабочим слоем мембраны. Вода и часть растворенных в ней веществ проталкиваются сквозь поры мембраны и отводятся в виде фильтрата. Молекулы, их ассоциаты и частицы жидкой смеси, имеющие больший размер, чем размеры пор мембраны, задерживаются, концентрируются в остатке жидкой смеси и образуют второй продукт процесса — концентрат. Концентрат циркулирует непрерывно до получения требуемой или допустимой степени обезвоживания задержанных мембраной веществ. Процесс осуществляют при давлении 1,4—5 МПа и скорости истока жидкой среды над мембраной 0,2—0,3 м/с. Установки обратного осмоса компактнее дистилляционных и электродиализных, просты и удобны в эксплуатации. [c.107]


    Мембраны - пленки или пластины полимерной природы, состоящие из органических или неорганических соединений, иногда нанесенные на керамику и мелкопористое стекло. Мембраны применяют для разделения жидких смесей электролитов и неэлектролитов методами ультрафильтрации, диализа, электродиализа или обратного осмоса. Мембраны позволяют отделить высокомолекулярные вещества с размерами частиц от 10 до 0,1 мкм от низкомолекулярных и электролитов, размер частиц которых меньше 10" мкм. В лабораториях мембраны готовят из нитро- и ацетатцеллюлозы, желатины и полимерных материалов на различной основе. [c.35]

    В баромембранных процессах (обратный осмос, ультрафильтрация) можно использовать жидкие мембраны, образованные по третьему способу. [c.36]

    Ультрафильтрация — процесс разделения высокомолекулярных и низкомолекулярных соединений в жидкой фазе с использованием селективных мембран, пропускающих преимущественно или только молекулы низкомолекулярных соединений. Движущей силой ультрафильтрации является разность давлений (рабочего и атмосферного) по обе стороны мембраны. Обычно ультрафильтрацию проводят при сравнительно невысоких давлениях 0,3—1 МН/м (3— 10 кгс/см2). Обратный осмос и ультрафильтрация имеют много общего. Для их осуществления, например, используются полупроницаемые мембраны, приготовленные из одного и того же материала, но имеющие различные размеры пор. Аппараты для этих процессов аналогичны. Однако необходимо отметить, что механизм процессов обратного осмоса и ультрафильтрации различен (см. стр. 83). [c.12]

    При обратном осмосе происходит разделение жидких фаз на молекулярном уровне. В отличие от ультрафильтрации при обратном осмосе используют фильтрующие мембраны, работающие [c.73]

    Обратным осмосом обычно называют процесс разделения водных растворов низкомолекулярных веществ, в том числе и во многих случаях солей. Используется обратный осмос и для разделения водных растворов, содержащих малые количества органических веществ. В этом процессе подлежащая разделению жидкая смесь подвергается действию внешнего давления, являющегося движущей силой процесса. Суммарный поток может быть представлен как сумма потоков воды Ju, и растворенного вещества 7,. Если мембрана высокоселективна, потоком Js можно пренебречь. Впрочем, и для менее селективных мембран поток растворителя (воды) много больше, чем поток растворенного вещества. В этом случае [c.264]


    Среди мембранных методов разделения жидких смесей важное место занимают обратный осмос и ультрафильтрация [1—3]. В последние годы их начали применять для опреснения соленых вод, очистки сточных вод, получения воды повышенного качества, концентрирования, технологических растворов в химической, пищевой, микробиологической и других отраслях промышленности. Обратный осмос и ультрафильтрация основаны на фильтровании растворов под давлением, превышающим осмотическое, через полупроницаемые мембраны, пропускающие растворитель, но задерживающие растворенные вещества (низкомолекулярные при обратном осмосе и высокомолекулярные при ультрафильтрации). Разделение проходит при температуре окружающей среды без фазовых превращений, поэтому затраты энергии значительно меньше, чем в большинстве других методов разделения (таких как ректификация, кристаллизация, выпаривание и др.). Малая энергоемкость и сравнительная простота аппаратурного оформления обеспечивают высокую экономическую эффективность указанных процессов. [c.319]

    Наиболее перспективно применение данного метода для разделения азеотропных смесей. На рис. 24-9 представлены варианты (кривые 1-3) разделения азеотропной смеси изопропанол-вода при различных температурах в конденсаторе 6 (см. рис. 24-8). На рис. 24-9 приведена также равновесная кривая 4 для этой смеси (без мембраны). Такое эффективное разделение азеотропа объясняется тем, что механизм разделения методом испарения через мембрану принципиально отличается от широко применяемой для разделения жидких смесей ректификации, основанной на разности давления (упругости) паров компонентов смеси. Вместе с тем сочетание мембранных процессов с ректификацией позволяет получать двухтрехкратный экономический эффект. Например, для разделения смеси этанол-вода (рис. 24-10) с использованием баромембранных методов (микрофильтрации и обратного осмоса) и ректификации можно концентрировать разбавленные растворы до составов, близких к азеотропным. Разделение азеотропных смесей экономически выгоднее проводить испарением через мембрану. [c.334]

    Применимость метода обратного осмоса зависит, конечно, от шособности мембран удерживать нужные растворенные пищевые вещества в концентрированном продукте. В действительности во многих случаях применения обратного осмоса в пищевой промышленности, как мы покажем ниже, скорость проникания воды ограничивается не самой мембраной, а замедленностью массопереноса в жидкой фазе. Функция мембраны в этом случае сводится к обеспечению задерживания растворенных веществ. В разд. 4 обсуждаются вопросы переноса растворенных пищевых веществ через мембраны. [c.212]

    В мембранных устройствах, действующих под давлением, веществ ва, содержащиеся в виде истинных растворов или коллоидных суспензий, вьщеляются либо методом ультрафильтрации, при которой вода проходит через поры (или дискретные отверстия в фильтрующей среде), а растворенные вещества задерживаются главным образом в соответствии с размером частиц, либо методом обратного осмоса — физико-химического процесса, в котором содержащиеся в растворе вещества задерживаются мембранами в соответствии с их химичео-кими характеристиками (а не их размером, который может быть того же порядка величины, что и размер молекул воды). В последнем случае жидкая фаза, с одной стороны, переносится через мембрану посредством образования и разрыва химических связей с определенными функциональными группами в мембране. Разность давления служит источником энергии дпя процесса переноса молекул воды. С другой стороны, растворенное в воде вещество практически нерастворимо в набухшей в воде мембране или диффундирует через нее чрезвычайно медленно. Поэтому соотношение между свойствами мембраны и химическими характеристиками и размерами частиц веществ, содержа]цихся в промышленных стоках, имеет су- [c.275]

    Характерные значения потока вещества при проведении процесса испарения через мембрану обычно не превосходят 2 кг/(м ч). Тогда нормальная к поверхности мембраны составляющая скорости жидкости вблизи поверхности не будет превосходить 6 10 м/с. Это примерно на порядок вели шны меньше, чем значения, характерные для процесса обратного осмоса. Поэтому обычно считают, что влиянием концентрационной поляризации на процесс массопередачи при испарении через мембрану можно пренебречь. Однако, как указывается в [8, 9], во многих практически важных случаях разделения жидких смесей путем испарения через мембрану концентрационная поляризация может оказывать существенное влияние на поток вещества через мембрану. Для предотвращения вредного влияния концентрационной поляризации толщина канала для подачи жидкости при использовании плоскорамных или спиральных модулей, или радиус полых волокон при использовании половолоконных модулей не должны превышать 0,2-Ю,5 мм. [c.433]


    Таким образом, мембрана для обратного осмоса по ионозадерживающей способности во многом сходна с жидкими органическими мембранами. Принципиальное отличие ее от органических мембран состоит в высокой водопроницаемости, что объясняется однородностью молекул растворителя в растворе и разделяющей пленки жидкости. [c.129]

    Кроме ацетилцеллюлозы, для изготовления мембран был применен ряд других материалов, а именно полиамиды (найлоны), полибензимидазолы, сульфонированный диметилполи-фениленоксид и полиэтиленимин. Для обратного осмоса был также испытан другой класс мембран, называемых динамическими (или мембранами in situ). Это жидкие мембраны, которые фактически образуются непосредственно на микропористой подложке, когда на ее поверхность наносится раствор, содержащий поверхностно-активные вещества [219]. Некоторые пористые материалы, не обладающие достаточной селективностью для обратного осмоса, могут быть использованы в этих [c.369]


Библиография для Мембрана для обратного осмоса жидкие: [c.10]   
Смотреть страницы где упоминается термин Мембрана для обратного осмоса жидкие: [c.27]    [c.225]    [c.41]    [c.567]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.46 , c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Осмос

Осмос обратный



© 2025 chem21.info Реклама на сайте