Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Холодильные циклы сжижения газов

    Иа рис. 59 приведена схема однопоточного каскадного цикла. Ее особенность — получение хладагента из газа, подлежащего сжижению. Исходный газ разделяется на два потока один после дросселирования направляется в теплообменник <3, где охлаждается холодным потоком остаточного газа, другой поток — в теплообменники 2, 4. После охлаждения оба потока смешиваются и поступают в сепаратор 5, Углеводородный конденсат из сепаратора 5 направляется на газофракционирующую установку 10 и разделяется на индивидуальные углеводороды (этан, пропан, бутан) и пентаны + высшие. На основе чистых углеводородов готовится холодильная смесь. Отсепарированный газ из сепаратора 5 после сжижения в теплообменнике 6 дросселируется и поступает в отпарную колонну 7. В колонне из сжиженного газа отпариваются азот и часть метана, уходящие через верх колонны. Сжиженный природный газ из нижней ча-204 [c.204]


Рис. 125. Пропан-пентановый холодильный цикл сжижения природного газа [86] Рис. 125. Пропан-<a href="/info/117583">пентановый</a> <a href="/info/95038">холодильный цикл</a> сжижения природного газа [86]
    Каскадные холодильные циклы представляют собой последовательно соединенные парокомпрессионные машины с различными хладагентами, отличающимися по температурам кипения. Принцип взаимодействия последовательно соединенных парокомпрессионных холодильных машин заключается в том, что хладагент, сжижающийся при более высокой температуре, служит для конденсации паров труднее конденсируемого хладагента. Например, в стандартном каскадном холодильном цикле, предназначенном для сжижения природного газа, обычно применяют три ступени. На первой ступени в качестве хладагента используют пропан, фреон или аммиак, на второй - этан или этилен, на третьей - метан или природный газ. Принципиальная схема каскадного холодильного цикла показана на рис. 31. [c.129]

    Принципы компоновки аппаратуры и оборудования заводов сжижения природного газа очень просты, хотя обслуживание и проблемы их эксплуатации довольно сложны. Однако по мере накопления опыта эксплуатация заводов сжижения становится обычным делом. Основной способ сжижения — перекачка тепла до температурного уровня, с которого оно может быть сброшено в следующих друг за другом ступенях. На практике это воплощается в ряде холодильных циклов и в разумном выборе хладагента для каждого температурного уровня. Другой способ — расширение потока газа, в результате которого он сжижается, и использование теплообменника и компрессора для перекачки газа на более высокий температурный уровень. Охлаждение газа за счет расширения применяется для выделения из него гелия, водорода и неона, так как эти компоненты имеют очень низкие критические температуры. Для получения этих газов необходимо конечное расширение (дросселирование на заключительной стадии процесса разделения), позволяющее получить более низкий температурный уровень по сравнению с тем, который достигается при обычном дросселировании или компрессионном охлаждении. [c.196]

    Энергетические показатели для установок сжижения природного газа и данные по коэффициентам сжижения природного газа (х), полученные для семи холодильных циклов при условии, что природный газ поступает на установку нри атмосферном давлении, приведены на рис. 30. [c.65]

Рис. 31. Энергетические показатели для холодильных циклов сжижения природного газа при исходном давлении газа от 15 до 80 кГ смР-(характеристики циклов см. в табл. 5). Рис. 31. Энергетические показатели для <a href="/info/95038">холодильных циклов</a> <a href="/info/1464530">сжижения природного газа</a> при исходном <a href="/info/862447">давлении газа</a> от 15 до 80 кГ смР-(характеристики циклов см. в табл. 5).

    В последние годы как у нас, так и за рубежом для процессов сжижения природного газа используют однопоточные каскадные холодильные циклы. Они отличаются тем, что в качестве хладагента используется жидкость, конденсирующаяся из сжижаемого природного газа. Соотношение компонентов в газе должно быть таким, чтобы парциальная конденсация на любой ступени была эквивалентна потребности в холоде на следующей ступени. В этом цикле можно получить любое разделение [c.130]

    Используя несколько детандеров на различных температурных уровнях, можно создать холодильный цикл ожижения газа, наиболее близко приближающийся к обратимому. На рис. 1-57 дана схема такого цикла с тремя детандерами и изображение цикла в координатах 8 — Т. Для рабочих газов, не очень сильно отступающих от идеальных, можно считать в первом приближении, что в каждый детандер должно поступать одинаковое количество газа. Число детандеров в каскаде зависит от степени сжатия газа. С увеличением сжатия число детандеров уменьшается. Возможен вариант цикла с каскадом детандеров, когда ожижаемая доля газа сжимается до более высокого давления рз, чем газ, расширяющийся в детандерах с давления рд (штриховая линия на рис. 1-57). Цикл с каскадом детандеров осуществлен пока при сжижении гелия. [c.58]

Рис. 30. Характеристика холодильных циклов сжижения природного газа. Рис. 30. Характеристика <a href="/info/95038">холодильных циклов</a> сжижения природного газа.
    Установка сжижения (рис. 81) включает аммиачный и этиленовый холодильные циклы и холодильный цикл природного газа. В этих циклах жидкий аммиак используется для конденсации этилена, а жидкий этилен охлаждает и конденсирует природный газ. [c.168]

    Рассмотренный цикл сжижения газа малоэффективен и поэтому находит ограниченное применение, например для получения небольших количеств жидкого воздуха или азота. Даже при давлении сжатия 20 МПа удельный расход энергии велик и составляет примерно 12 МДж на 1 кг жидкого воздуха, а холодильный коэффициент, т. е. отношение развиваемой холодопроизводительности к затрачиваемой энергии, равен —0,035. [c.98]

    На установке исследовали два режима ее работы а) полузамкнутый холодильный цикл сжижения природного газа и б) замкнутый холодильный цикл для охлаждения либо сжижения пирогаза или воздуха. [c.224]

    А. П. Клименко, Однопоточный каскадный цикл сжижения газов. Доклад на 10 Международном холодильном конгрессе, Копенгаген, 1959. [c.50]

Рис. 123. Установка сжижения природного газа с детапдерным холодильным циклом для Рис. 123. <a href="/info/1800214">Установка сжижения природного газа</a> с детапдерным холодильным циклом для
    Ректификацию сжиженных газов применяют для разделения газовых смесей на составные компоненты и проводят ее при низких температурах, достигаемых при помощи холодильных циклов (стр. 545 сл.). [c.690]

    Каскадный цикл сжижения. На рис. 120 показана схема стандартного каскадного цикла сжижения, который широко применяется для разделения газов. В этом цикле для получения необходимой температуры в первой ступени охлаждения и конденсации хладагента второй ступени (обычно этилена) применяется пропан или фреон. В свою очередь, с помощью этилена достигается температура второй ступени охлаждения и конденсируется хладагент третьей ступени (обычно метан). Метан применяется в качестве хладагента на третьей ступени охлаждения, а также для дополнительного охлаждения продукции перед поступлением ее в хранилища. По существу, каскадный цикл состоит из трех отдельных, но сблокированных последовательно холодильных систем. Они различаются между собой только применяемым хладагентом. Для сжижения гелия данная схема дополняется последующими ступенями с применением в качестве хладагентов азота, водорода и гелия. [c.198]

    Пропан-пентановый абсорбционный холодильный цикл. На рис. 125 показана схема трехступенчатого пропан-пентанового холодильного цикла. Этот цикл не применяется для общего сжижения газа, хотя он и осуществляется в криогенной области. Холод в данном случае получается за счет кипения пропана в низу колонны 1. В верхней части колонны пары пропана поглощаются охлажденным пентаном. Жидкая смесь пропана и пентана перекачивается в колонну 2 и затем в колонну 3, абсорбируя пары пропана в каждой из них. В колонне 5 происходит разделение смеси на пропан и пентан. [c.202]

    На рис. 32 приведена схема однопоточного каскадного холодильного цикла с получением хладагента непосредственно из природного газа, подлежащего сжижению. [c.131]

    На выбор холодильного цикла и технологической схемы сжижения природного газа оказывают влияние следующие факторы состав и давление сжижаемого газа требуемая про- [c.152]

    В последние годы наметилась явная тенденция увеличения доли получаемых сжиженных газов, используемых в качестве моторных топлив. Причем в производство моторных топлив начали вовлекать не только пропан, пропан-бутановую фракцию и бутан, но и более легкие углеводороды, например сжиженный природный газ, который получают с использованием каскадных холодильных циклов, дросселей и турбодетандеров. [c.153]


    Для осуществления процесса необходимо проведение холодильного цикла, холодопроизводительность которого должна быть равна заданной величине. Для разделения газовых смесей и сжижения газов применяют так называемые циклы глубокого охлаждения, в которых происходит дросселирование газа или расщирение его в детандере. [c.546]

    Первая схема со смешанным хладоагентом разработана в СССР применительно к процессу сжижения природных газов [75]. В этой схеме хладоагент испаряли последовательно в нескольких испарителях (т. е. хладоагент как бы фракционировался), фракции компримировались одним компрессором. Дальнейшие исследования показали, что при определенном составе хладоагента необходимый уровень температур можно получить при одноступенчатом его испарении. Это позволяет упростить схему и повысить эффективность холодильного цикла. [c.172]

    На проведение процессов сжижения и низкотемпературного разделения газов расходуется определенное количество холода, которое должно быть выработано в холодильном цикле установки. [c.56]

    Наиболее простым является холодильный цикл, основанный на процессе дросселирования (рис. 23). На примерах принципиальных схем установок сжижения и низкотемпературного разделения газов, в основе которых лежит холодильный цикл с дросселированием (рис. 24), рассмотрим баланс холода на установках количество вырабатываемого в цикле холода (холодопроизводительность цикла) и статьи расхода холода. [c.56]

    На рис. 29 представлены некоторые из возможных вариантов холодильных циклов с расширительными машинами (детандерами) применительно к установкам сжижения природного газа цикл с расширением в детандере нри высоких температурах (рис. 29, а), цикл с расширением в детандере при средних температурах (рис. 29, б), цикл с расширением в детандере и с предварительным охлаждением (рис. 29, б). [c.63]

Рис. 122. Дстандсрныг холодильный цикл сжижения природного газа [84] Рис. 122. Дстандсрныг <a href="/info/95038">холодильный цикл</a> сжижения природного газа [84]
    Типичная схема установки низкотемпературной сепарации (УНТС) представлена на рис. 1. Сырой газ со скважин поступает на первую ступень сепарации /, где отделяется жидкая фаза (пластовая вода с растворенными ингибиторами и сконденсировавшийся углеводородный конденсат). Отсепарирован-ный газ направляется в рекуперативные теплообменники 2 и 3 для рекуперации холода с дросселированных потоков газа и конденсата. Для предупреждения гидратообразования в поток газа перед теплообменниками впрыскивают моно-, диэтилен-гликоль (ДЕГ) или метанол. При наличии свободного перепада давления (избыточного давления промыслового газа) охлажденный газ из теплообменников поступает в расширительное устройство - дроссель или детандер. При отсутствии свободного перепада давления газ направляют в испаритель холодильного цикла, где используется внешний хладагент, например сжиженный пропан. После охлаждения в расширительном устройстве или испарителе газ поступает в низкотемператур- [c.5]

    Опыт эксплуатации газоконденсатных месторождений показывает, что метод НТК вполне может обеспечить качественную подготовку газа к его транспортированию. Поэтому установка (узел) НТК с применением (в зависимости от давления газа) процессов детандирования (дросселирования) или внешнего холодильного цикла является обязательной частью технологического комплекса по первичной переработке конденсатсодержаш,его газа и конденсата. Дальнейшие технологические решения могут быть различными. Для более полного извлечения целевых компонентов и получения ШФУ и стабильного бензина возможно применение схем низкотемпературной абсорбции может быть применена также схема деэтанизации (деметанизации) и дальнейшего фракционирования конденсата на сжиженный газ и стабильный бензин, или на этановую фракцию, сжиженный газ и стабильный бензин, или на индивидуальные углеводороды и стабильный бензин в ректификационных колоннах. [c.261]

    А. Г. Ч е г л и к о в, Применение координат для анализа силовых и холодильных циклов, Сжижение и разделение углеводородных газов , Труды ИИГ АН УССР, кн. 4, Изд-во АН УССР, 1956. [c.50]

    В дроссельных холодильных циклах используется эффект Джоуля — Томсона. Эти циклы достаточно эффективны при больших перепадах на дросселе. Со снижением перепада их эффективность резко падает. В условиях небольших перепадов шачительно более эффективно расширение газа в детандерах. Однако для получения очень низких температур, приближающихся к началу сжижения газа, эффективность детандеров тювь снижается. Это объясняется резким отклонением свойств реальных газов от идеальных при температурах, близких к температуре сжижения. В этих условиях резко падает способность газа к расширению, растут потери холода и возникает опасность гидравлических ударов. Современш ш конструкции детандеров допускают конденсацию жидкости в детандере до 20 мае. 7о- [c.134]

    На рис. 123 показана упрощенная схема установки сжижения природного газа с детандерным холодильным циклом. Эта установка, пepepaбaтывaFJщaя 566 334 м газа в 1 сут, принадлежит фирме Norihere est Natural Gas Со и предназначена для покрытия пиковых нагрузок газопотребления. [c.201]

    Если газ поступает на сжижение при относительно невысоком давлении и нет возможности его охлаждения путем детан-дирования или, тем более, дросселирования, то целесообразнее использование каскадных трех- или однопоточных холодильных циклов. На практике каскадные холодильные циклы из-за их относительно высокой стоимости и более сложного управления используются, главным образом, на установках высокой производительности (более 1 млн. м /сут по сжиженному газу). Схемы трех- и однопоточного каскадных холодильных циклов рассмотрены в разделе в гл. 6 (см. рис. 29, 30). [c.153]

    Для охлаждения до значительно более низких температур, чем О "С, применяют холодильные агенты, представл5иош,ие собой нары низкокипящих жидкостей (например, аммиака), сжиженные газы (СО,, этан и др.) или холодильные рассолы. Эти агенты нспользу[от в специальных холодильных установках, где при их испарении тепло отнимается от охлаждаемой среды, после чего пары сжижаются путем компрессии или абсорбируются и цикл замыкается. Описание холодильных установок приведено в главе XVII. [c.325]

    Низкотемпературная абсорбция. Степень извлечения углеводородов Сз и выше на установках маслоабсорбционной переработки нефтяного и природного газа достигает 80-85%. В дальнейшем в целях увеличения степени извлечения сжиженных газов масляная абсорбция стала сочетаться со снижением температуры газа и использованием аммиачного или пропаново-го холодильного цикла при температурах до минус 45 С. [c.89]

    По мере увеличения потребности в углеводородном сырье (этане и сжиженных газах) совершенствовались схемы маслоабсорбционных установок в 50—60-х годах широкое распространение получили схемы низкотемпературной абсорбции (НТА), где для охлаждения технологических потоков наряду с водяными (воздушными) холодильниками стали применять специальные холодильные системы (такие же, как в схемах НТК). Технологическая схема низкотемпературной абсорбции состоит как бы из двух частей блока предварительного отбензннивания исходного газа, представляющего собой узел НТК, и блока низкотемпературной абсорбции,, где происходит доизвлечение углеводородов из газа, прошедшего через блок НТК. Такое комбинирование процессов делает схему низкотемпературной абсорбции (НТА) достаточно гибкой и универсальной — она может быть использована для извлечения этана и более тяжелых углеводородов из газов различного состава. Применение схем НТА позволяет обеспечить высокое извлечение пропана из нефтяных газов при сравнительно умеренном охлаждении технологических потоков на установках НТА для извлечения 90—95% пропана достаточно иметь холодильный цикл с изотермой — 30- —38 °С, на установках НТК для этого требуется изотерма -80- —85 °С. [c.205]

    Рассмотрим процесс сжижения газа, сопровождающийся ионижением температуры газа от Г] (температуры окружающей среды) до I2 при постоянном давлении и затем полным сжижением газа при температуре T a (рис. 19). От газа отнимается теило при переменных температурах (от Ti до T a) и тепло Qi = Н — Hq при температуре Т - При идеальном процессе теило передается на высший температурный уровень Ti при помощи бесконечно большого числа холодильных агентов — рабочих тел обратных циклов Карно (абвг) с переменными температурами холодного источника, лежащими между и T a, а теило j — при помощи рабочего тела обратного цикла Карно с температурой холодного источника T a-Разность температур между холодильными агентами и источниками (с одной стороны — окружающей средой, с другой стороны — охлаждаемым и сжижаемым газом) является ири этом бесконечно малой величиной. [c.53]

    Величина х И — Н ) = Qi равна количеству холода, заключенного в сжиженной части газа (х). Величина — = ( хол является количеством холода, вырабатываемого в данном холодильном цикле, — холодопроизводительиостью цикла. [c.58]

    Экономичность холодильного цикла с дросселированием может быть также повышена применением цикла с двумя давлениями газа (рис. 28). Перерабатываемый газ, сжатый до давления Р , после теплообменника вначале дросселируется в сосуд С- до промежуточного давления Р. . Несжиженный газ отдает свой холод в теплообменнике и выводится с установки при давлении Р . Сжиженный газ из сосуда дросселируется в сосуд б з, из которого он выводится в виде продукта при атмосферном давлении. Прп втором дросселировании часть жидкости испаряется и газ выводится через теплообменник А с установки нри низком давлении Р . Поток с давлением Р в зависимости от конкретных условий либо поступает в компрессор и вновь возвраш,ается на установку (н установках сжижения газа), либо постуиает в газопровод природиого газа (в установках разделения газа). [c.63]

    При оценке экономичности холодильных циклов для установок сжижения природного газа важным показателем являются энергетические затраты иа процесс сжижения, составляюш,ие для промышленных установок суш ественную долю общей суммы затрат. Необходимо учитывать также капитале- и металловложения в установку, сложность машинного п аппаратурного оформления установки, в основе которой лежит данный холодильный цикл, и другие эксплуатационные затраты, в частности затраты на очистку и осушку газа. Известным показателем экономичности установки является количество перерабатываемого природного газа в кг на 1 кг сжижаемого газа — величина, обратная коэффициенту сжижения газа (х). Прп увеличении коэффициента сжижения газа х (еслн это не влечет за собой большого усложнения установки) можно достичь меньших капитальных затрат и металловложений, а также меньших эксплуатационных расходов. [c.65]


Смотреть страницы где упоминается термин Холодильные циклы сжижения газов: [c.317]    [c.290]    [c.129]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.743 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.674 ]




ПОИСК





Смотрите так же термины и статьи:

Циклы сжижения



© 2025 chem21.info Реклама на сайте