Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индивидуальные углеводороды

    Углеводородный газ —состоит в основном из пропана и бутана. Пропан-бутановая фракция используется как сырье газофракционирующей установки для выделения из нее индивидуальных углеводородов, получения бытового топлива или компонента автобензина. В зависимости от технологического режима первичной перегонки нефти пропан-бутановая. фракция может получаться в сжиженном или в газообразном состоянии. [c.150]


    В табл.4.1 приведены антидетонационные свойства индивидуальных углеводородов и компонентов бензинов, полученных раз — личными процессами переработки нефти и нефтяных фракций. Из анализа этой таблицы можно заметить следующие основные закономерности влияния химического строения углеводородов и бензиновых компонентов на их детонационные свойства  [c.105]

    Углеводородное топливо представляет собой жидкость сложного состава, состоящую из большого количества индивидуальных углеводородов. Такая жидкость не имеет определенной температуры кипения, процесс кипения происходит в некотором интервале температур. Характеризовать испаряемость жидкостей сложного состава можно фракционным составом, т. е. предельными температурами выкипания определенных объемных долей (фракций). Характерными точками фракционного состава обычно считают температуру начала кипения, температуру выкипания 10, 50, 90% объема топлива и температуру конца кипения. Фракционный состав топлива определяют по ГОСТ 2177—59 в лабораторных условиях на стандартной установке, схема которой показана на рис. 4. [c.22]

    Иа рис. 59 приведена схема однопоточного каскадного цикла. Ее особенность — получение хладагента из газа, подлежащего сжижению. Исходный газ разделяется на два потока один после дросселирования направляется в теплообменник <3, где охлаждается холодным потоком остаточного газа, другой поток — в теплообменники 2, 4. После охлаждения оба потока смешиваются и поступают в сепаратор 5, Углеводородный конденсат из сепаратора 5 направляется на газофракционирующую установку 10 и разделяется на индивидуальные углеводороды (этан, пропан, бутан) и пентаны + высшие. На основе чистых углеводородов готовится холодильная смесь. Отсепарированный газ из сепаратора 5 после сжижения в теплообменнике 6 дросселируется и поступает в отпарную колонну 7. В колонне из сжиженного газа отпариваются азот и часть метана, уходящие через верх колонны. Сжиженный природный газ из нижней ча-204 [c.204]

    Теплота сгорания углеводородных топлив зависит от химического состава и строения индивидуальных углеводородов, входящих в состав топлива, и для углеводородов различных групп находится в пределах 9500—10 500 ккал кг. В табл. 4 приведены значения теплоты сгорания на единицу массы и объема для элементов, обладающих наибольшей теплотой сгорания по сравнению с остальными элементами периодической системы. [c.21]


    Высокооктановыми компонентами авиационных бензинов являются индивидуальные углеводороды изопентан, неогексан, изооктан, триптан, бензол, толуол, их смеси и смеси изопарафиновых углеводородов. [c.103]

    Теплота сгорания топлива зависит от соотношения углерода и водорода в молекулах индивидуальных углеводородов. Чем больше в топливе содержится водорода, тем выше теплота сгорания. Наибольшую массовую теплоту сгорания имеют парафиновые углево- [c.21]

    Парафиновые углеводороды с б —10 атомами С, кроме использования их к качестве специальных растворителей, находят лишь ограниченное применение в нефтехимической промышленности. Напротив, важную роль играют высокомолекулярные углеводороды с 10—20 атомами С. Газообразные члены парафинового ряда, содеря ащиеся в природном нефтяном газе, в газах, сопровождающих нефть при ее добыче, и в отходящих газах нефтеперегонных установок вследствие большой разницы в температурах кипения могут быть сравнительно простыми методами разделены па технически чистые индивидуальные углеводороды. Для получения углеводородов, кипящих при более высоких телгпературах, чем бутап, сырьем может служить газовый бензин, ниже рассматриваемый подробно. Из него методом четкой ректификации мояшо получать пентан, гексан и гептан. Парафино-пьте углеводороды с 6—10 атомами С и парафиновые углеводородьс с 10— 20 атомами С в настоящее время получают в чистом виде из нефтяных фракций посредством экстрактивной кристаллизации с мочевиной. Парафин, являющийся смесью высокомолекулярных парафиновых углеводородов преимущественно с прямой цепью, получают в больших количествах депара-финизацией масляных фракций. Продукт этот является чрезвычайно ценным сырьем. [c.10]

    Обширные исследования, проведенные на типичной американской нефти (месторождение Понка, Оклахома) [57], из которой на июнь 1951 г. было выделено 122 индивидуальных углеводорода, дали приведенные ниже сведения о содержании парафиновых углеводородов нормального строения. [c.58]

    В первой части книги подробно описываются сырьевые ресурсы для нефтехимической промышленности и способы получения индивидуальных углеводородов. [c.6]

    Большое влияние на пределы воспламенения оказывает молекулярный вес топлива. На рис. 44 приведены пределы воспламенения горючих смесей индивидуальных углеводородов, отличающихся молекулярным весом. Как видно из рисунка, с увеличением молекулярного веса от метана (/) до гексана (б) пределы воспламенения значительно расширяются. [c.74]

    Разделение олефинов и парафинов с равным числом углеродных атомов для фракции Сг проходит довольно легко и успешно, так как разница между температурами кипения этана и этилена составляет около 15°. Пропан и пропен, разница между температурами кипения которых составляет всего 5,5°, разделить значительно труднее. Для фракции С4, которая может включать в себя уже шесть различных индивидуальных углеводородов, разделение фракционировкой невозможно. Здесь в лучшем случае удается изолировать две группы углеводородов, а именно изобутен, изобутан и н-бутен-1, с одной стороны, и н-бутен-2 и и-бутан — с другой. [c.69]

    Низкомолекулярные компоненты нефти, например, содержащиеся в отходящих газах (нефтеперегонных установок или в природных газах, легко разделяются на индивидуальные углеводороды перегонкой под давлением благодаря значительному различию их температур кипения. [c.12]

    Интересно сравнительно равномерное содержание в этой нефти индивидуальных углеводородов нормального строения различного молекулярного веса [58]. [c.58]

    Следующий пример показывает результаты при полу- и полном сульфохлорировании индивидуального углеводорода, а именно и-додекана. [c.378]

    Содержание всех индивидуальных углеводородов, обнаруженных в бензине, определено количественно и вычислено в весовых процентах на бензин. Результаты определения приведены в табл. 1. В той же таблице приводится групповой состав мирзаанского беизина с учетом ароматических углеводородов, в отдельности алканов нормального и изостроения, а также циклопентановых и циклогексановых углеводородов. [c.207]

    Способность индивидуальных углеводородов кристаллизоваться, а также их температура кристаллизации (или плавления) зависят от строения молекул, в частности, от их симметричности и степени разветвленности входящих в них радикалов. [c.40]

    Более четкое представление можно получить, только определив все жирные кислоты, образующиеся при окислении какого-нибудь индивидуального углеводорода. [c.582]

    На рис. 52 графически представлена зависимость турбулентной скорости распространения пламени от числа Рейнольдса для индивидуальных углеводородов. Как видно из графика, скорость распространения пламени только за счет турбулентности может быть увеличена с 147 до 320 см сек у ацетилена, с 70 до 120 см/сек у этилена и с 45 до 55— [c.81]

    На основании экспериментальных исследований было выведено эмпирическое уравнение, связывающее тенденцию к нагарообразованию топлив с отношением С Н и температурой выкипания 10% (для индивидуальных углеводородов — с температурой их кипения)  [c.83]


    Нагарообразующая способность индивидуальных углеводородов и топлив [c.83]

    В отличие от топлив масла состоят из углеводородов значительно большего молекулярного веса. Эти углеводороды обладают более сложной структурой и отличаются обилием изомерных форм, что крайне затрудняет возможность выделения индивидуальных углеводородов и, следовательно, изучение их. [c.139]

    Для определения молекулярной массы нефтепродуктов различного происхождения, выкипающих в широком интервале температур (от 77 до 449 °С), и индивидуальных углеводородов в работе [31] предлагается следующее уравнение, обеспечивающее высокую точность расчета (максимальная ошибка 4,5%, средняя ошибка 2,4 7о)  [c.39]

    Выделение и идентификация индивидуальных углеводородов из нефти является одной из сложных задач химии нефти. [c.19]

    В результате проведенного исследования нами было найдено всего 42 индивидуальных углеводорода, из них алканов — 19, пятичленных цикланов — 8, шестичленных цикланов — 9 и ароматических — 6. [c.207]

    Исследования Н. Д. Зелинского [2] и М. Б. Туровой-Поляк с сотрудниками [2—11] были проведены над индивидуальными углеводородами. Интересно было выяснить изо-меризующую способность хлористого алюминия по отношению гомологов циклопентана в такой сложной смеси, какой является деароматизированный бензин. [c.216]

    Среди нефтяных углеводородов равного или близкого молекулярного веса наиболее высокими температурами плавления обладают алканы нормального строения. Углеводородов же изостроения, а также циклических структур с температурами плавления более высокими, чем и-алканов равного молекулярного веса или с равным числом атомов углерода, известных среди синтетических индивидуальных углеводородов, в нефтяных продуктах пока обнаружено не было. [c.56]

    Углеводороды, входящие в состав авиационных топлив, разделяются на алканы нормального строения и изостроения, нафтены и ароматические (см. гл. 1). Исследование противоизносных свойств отдельных групп углеводородов проводилось при испытании смеси индивидуальных углеводородов равной вязкости. Алканы нормального строения были представлены смесью пентадекана с н-гепта-ном, нафтены — смесью циклогексана с декалином, ароматики — смесью изопропилбензола с а-метилнафталином. Вязкость каждой смеси была подобрана равной 1,5—1,6 сст при 20° С. [c.66]

    Искусственные газы на нефтеперерабатывающих заводах подвергают очистке от серы и вредных газообразных неуглеводородных примесей, влияющих на качество получаемых продуктов, разделению на фракции и индивидуальные углеводороды методами абсорбции, адсорбции, ректификации, хемосорбции, полимеризации, а также алкилированию. [c.89]

    Освобождение высокоароматизированных концентратов от равнокипящих алифатических углеводородов и получение таким образом чистых индивидуальных углеводородов нринципиально осуществимо различными путями. Выделение ароматических углеводородов из ароматизированных жидкостей возможно, например, путем экстракции. Для этого применяют в большинстве случаев жидкую двуокись серы (сернистый ангидрид). Способ был предложен для этой цели в 1907 г. Эделеану и первоначально применялся для очистки керосина [7]. Экстрагируемый исходный материал смешивается с жидким сернистым ангидридом (рис. 49), который растворяет ароматические углеводороды и как тяжелый слой оседает вниз (экстракт). Вследствие растворяющего действия ароматических углеводородов вместе с ними переходит в экстракт и определенная часть неароматических составных частей. Для удаления их экстракт промывают высококипящей парафи-аистой фракцией, извлекающей эти неароматические углеводороды. Затем из экстракта удаляют сернистый ангидрид, который возвращается на уста- [c.106]

    Сло кные колонны чаще всего применяются в тех случаях, согда не требуется очень высокая четкость погоноразделепия, т. е. когда надо отобрать сравнительно широкие фракции. Если требуется выделить узкие фракции либо индивидуальные углеводороды, например при выделении сырья для ароматизации, ири ректификации газов, при выделении продуктов нефтехимических производств и т. д., применяется система простых колонн. В этих случаях каждая колонна снабжается самостоятельным конденсатором и кипятильником. [c.224]

    Получёние ароматических углеводородов из нефти осуществляется, следовательно, в три стадии получение четкой ректификацией необходимых нефтяных фракций, собственно каталитический риформинг этих фракций, включающий с химической точки зрения два основных процесса — дегидрирование и изомеризацию нафтенов — и, наконец, переработка высокоарома-тизированных продуктов риформинга для получения чистых индивидуальных углеводородов, как бензол, толуол и ксилольная фракция. [c.105]

    Для разделения фракции суммы ароматических углеводородо , с получением индивидуальных углеводородов сравнительно вьгсо- [c.249]

    Сульфокислотный слой отделяли от деароматизирован-ного бензина, разбавляли трехкратным объемом воды и разлагали по Кижнеру [19]. Разбавленные сульфокислоты помещали в колбу Вюрца и перегоняли до 210°. Температуру мерили термометром, опущенным в жидкость. Ароматические углеводороды, выделенные в результате гидролиза сульфокислот, отделялись от водного слоя, промывались 10%-ным раствором соды, затем водой, сушились над хлористым кальцием и перегонялись над металлическим натрием. Имея большое количество выделенных ароматических углеводородов, при помощи многократной фракционировки, получили индивидуальные углеводороды. Константы полученных аро-.матических углеводородов сведены в табл. 2. [c.16]

    Дробной перегонкой супсинской нефти из скважины № 5, с удельным весом 0,905, отобрали фракции 60—95°, 95—122°, 122—150° и 150—200°, которые после многократной перегонки не давали характерную реакцию на непредельные углеводороды. Отобранные фракции встряхивались с 75%-ной серной кислотой в течение 10 минут, затем промывались водой, 10%-ным раствором соды, снова водой, сушили над хлористым кальцием и перегоняли в присутствии металлического натрия. Для вышеуказанных фракций были определены удельный вес, показатель лучепреломления и анилиновая точка. В каждом опыте применяли свежеперегнанный анилин, чистоту которого определяли по анилиновой точке индивидуального углеводорода. Затем проводили сульфирование фракции дымящей серной кислотой, содержащей 1,54% свободного серного ангидрида. Смесь бензина и серной кислоты помещалась в склянку и встряхивалась на трясучке в течение [c.137]

    Нефть мирзаанского месторождения из 9, И, 12 и 15 горизонтов подвергалась дробной перегонке. Полученные фрак-нии 60—95°, 95—122°, 122—150°, 150—200 взбалтывались с 75 7о-ной серной кислотой в течение 15 мин., затем промывались водой, 10 %-ным раствором соды, снова водой, сущились над хлористым кальцием и перегонялись в присутствии металлического натрия. Для полученных фракции были определены удельный вес, показатель лучепреломления и анилиновая точка. Для опытов применялся свсжевысушениый и свежеперегнанный анилин, чистота которого проверялась анилиновой точкой индивидуального углеводорода. Ароматические углеводороды выделялись серной кислотой, которая содержала 1,5% свободного серного ангидрида. Смесь бензниа н серной кислоты помещалась в склянку на трясучке и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов контролировалось качественной реакцией (серная кислота + формалин). Деароматизированные фракции промывались, сушились и перегонялись в при- [c.141]

    Исследования связи между характером вязкостно-температурной зависимости как индивидуальных углеводородов, так и фракций нефтяных масел и их химической природой и структурой, проводившиеся в течение ряда лет многими исследователями, позволяют обобщить основные положения этой связи [15 —18]. Наихудшей вязкостно-температурной зависимостью обладают находящиеся в нефтях и в некоторых нефтяных продуктах высокомолекулярные асфальто-смолистые вещества, а также полицикли-ческие углеводороды, особенно полициклические ароматические углеводороды с короткими боковыми цепями. Наилучшей вяз-костно-температурной зависимостью обладают углеводороды, имеющие длинную алифатическую цепь, в частности алкиларома-тические и алкилпафтеновые углеводороды. Увеличение числа, боковых цепей, а также их разветвление ухудшают вязкостнотемпературную характеристику углеводородов. [c.14]

    Мирзаанская нефть нз скиажины № 140 с удельным весом — 0,8699 несколько раз подвергалась дробной перегонке. Полученная фракция 60—150 взбалтывалась с 75%-ной серной кислотой в теченне 15 мин, после чего промывалась водой, 10%-ным раствором соды, снова водой, сушилась хлористым кальцием и перегонялась в присутствии металлического натрия. Для указанной фракции определялись удельный вес, показатель лучепреломления н максимальная анилиновая точка. Для опытов нрнменялн сухой и свежеперегнанный анилин, чистота которого проверялась посредством анилиновой точки чистого индивидуального углеводорода. Ароматические углеводороды, находящиеся в мирзаанской нефти (фр. 60—150°), удалялись действием серной кислоты удельного веса 1,84. Смесь бензина и серной кпслоты помещалась о склянке с притертой пробкой и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов проверялось качественной реакцией (серная кислота + формалин). Деароматизированная фракция промывалась, сушилась н перегонялась в присутствии металлического натрия, после чего определялись те же константы, что и до обработки серной кислотой. По изменению максимальных анилиновых точек и с применением коэффициентов, приведенных в трудах ГрозНИИ [18] определялся групповой состав вышеуказанной фракции. [c.226]

    Характеристика сырья. В зависимости от назначения установк каталитического риформинга гидроочистке подвергают бензиновы фракции с различными пределами кипения. Для получения высоко октанового бензина используют фракции 85—180 °С и 105—180 °С для нолучения индивидуальных углеводородов бензола — фракцин 60—85 °С, толуола — фракцию 85—105 °С, ксилолов — фракции 105—140 °С, псевдокумола, дурола, изодурола — фракцию 130— 165 °С. Поскольку при гидроочистке фракционный состав не меня ется, то требования к сырью определяются процессом каталитлче ского риформинг Показатели качества сырья для установок ката литического риформинга приведены в табл. 5. [c.22]

    В нефтехимической практике приобретает псе большее зиач -ние выделение индивидуальных углеводородов пз различных смесей большей частью близкокипящих веществ, склонных к образованию гомоазеотропов. Для этой цолп применяется процесс азеотропной ректификации илн его разновидность — экстрактии-ная ректификация. [c.268]

    Физико-химические свойства индивидуальных углеводородов, Гостоптехиздят, выи. 1, 1945 и выи. 2, 1947. [c.398]

    Если рассматривать индивидуальные углеводороды, которые могут входить в состав вязкостнозастывающего компонента масел, то не все они должны быть обязательно веществами, вообще неспособными кристаллизоваться. Среди них существенную долю могут занимать углеводороды, хотя и способные кристал- лизоваться вообще, но имеющие температуры кристаллизации более низкие, чем температуры застывания основных вязкостно-застывающих компонентов, и по этой причине не придающие последним структурное застывание. [c.35]

    Для индивидуальных углеводородов температуры перехода из одной модификации в другую изучены только для м-алканов. Для изоалканов и циклических углеводородов данные по температурам перехода имеются только для некоторых главным образом низкомолекулярпых представителей этих углеводородов. Эти значения температур перехода для -алканов приведены в табл. 5. Из данных табл. 5 видно, что для твердых -алканов разность между температурами плавления и температурой перехода составляет примерно 3—12° при некоторой тенденции этой разности к уменьшению по мере повышения температуры плавления -алканов, хотя строгой закономерности в этом и не наблюдается. Для технических же парафинов (средняя температура плавления порядка 50°) разница между температурой плавления и температурой перехода составляет 15—20° и существенно уменьшается с повышением температуры плавления. При этом для парафинов широкого фракционного состава отмечается более высокая величина этой разности, чем для узких его фракций. Для большинства товарных парафинов, вырабатываемых из парафиновых дистиллятов, температура перехода из мягкой волокнистой аллотропной формы в хрупкую пластинчатую лежит в пределах 30—33°. Здесь следует отметить, что температура перехода для технических парафинов и зависимость ее от температуры плавления, молекулярного веса, фракционного состава, химической природы остается еще весьма мало изученной, несмотря па большую важность этого вопроса. [c.60]


Смотреть страницы где упоминается термин Индивидуальные углеводороды: [c.108]    [c.353]    [c.516]    [c.80]    [c.43]    [c.35]    [c.93]    [c.155]   
Смотреть главы в:

Пестициды химия, технология и применение -> Индивидуальные углеводороды

Жидкие и твердые химические ракетные топлива -> Индивидуальные углеводороды

Химия гербицидов и регуляторов роста растений -> Индивидуальные углеводороды

Пестициды -> Индивидуальные углеводороды




ПОИСК







© 2025 chem21.info Реклама на сайте