Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформационные параметры белков

    Состояние молекул белка в растворе характеризуется набором конформеров, обратимо переходящих друг в друга. Конформационные переходы молекулы определяются в значительной степени двумя параметрами — pH и температурой. При повыщении температуры происходит плавление некоторых участков белковой молекулы. Если такого рода процессы достигают значительной глубины, могут происходить необратимые изменения структуры, в большинстве случаев приводящие к потере функциональной активности. Этот процесс обычно называют тепловой денатурацией. При каждом значении pH белок характеризуется соответствующим распределением зарядов, создаваемым ионогенными группами. При очень низ- [c.231]


    В 1980-е годы исследования такого плана не претерпели существенных изменений и не внесли новых идей в решение проблемы свертывания белковой цепи. Для иллюстрации рассмотрим кратко результаты теоретического анализа процесса сборки полипептидной цепи бычьего панкреатического трипсинового ингибитора С. Миязавы и Р. Джернигана [201]. Белок изображался ими в виде цепочки жестких сфер, совмещенных с атомами и аминокислотных остатков. Конформационными параметрами считались двухгранные углы ф, ф, которым разрешалось принимать дискретные значения через каждые 10°. Межостаточные взаимодействия учитывались исключительно между теми парами остатков, которые в кристаллографической структуре бычьего панкреатического трипсинового ингибитора (БПТИ) [c.293]

    При поиске решения структурной проблемы белка особенно вдохновляющими примерами явились результаты теоретических исследований Л. Полинга и Р. Кори регулярных структур полипептидов [53] и Дж. Уотсона и Ф. Крика двойной спирали ДНК [54]. В этих работах с помощью простейшего варианта конформационного анализа - проволочных моделей, получивших позднее название моделей Кендрью-Уотсона, а также ряда экспериментальных данных, прежде всего результатов рентгеноструктурного анализа волокон (в случае ДНК еще и специфических соотношений оснований Э. Чаргаффа), удалось предсказать наиболее выгодные пространственные структуры полимеров. Собственно, предсказана была как в случае пептидов, так и нуклеиновых кислот, геометрия лишь одного звена, которое в силу регулярности обоих полимеров явилось трансляционным элементом. Белок же - гетерогенная аминокислотная последовательность, и поэтому таким путем предсказать его трехмерную структуру нельзя. Но то обстоятельство, что простейший, почти качественный, конформационный анализ привел к количественно правильным геометрическим параметрам низкоэнергетических форм звеньев, повторяющихся в гомополипептидах и ДНК, указывало на большие потенциальные возможности классического подхода и его механической модели в описании пространственного строения молекул. [c.108]

    В бислой определенного липидного состава [588, 589]. Широких систематических исследований по двухмерной кристаллизации мембранных белков до настоящего времени не проведено. Поэтому эмпирический подход все еще является основным. Однако результаты, полученные в ходе изучения нескольких мембранных белков, позволяют выделить ряд факторов, влияющих на формирование кристаллов. В общем случае кристаллизация реконструкцией является более многопараме-торным процессом, чем в случае кристаллизации без полной солюбилизации мембран. В зависимости от условий реконструкция белков в липид может приводить к образованию различных структур много- и однослойных протеолипосом, трубчатых структур, плоских мембран. Наиболее удобны для электронно-микроскопического изучения плоские мембраны. Необходимо также, чтобы реконструированный в такие мембраны белок имел "плотную упаковку". Для получения требуемых структур определяющими являются выбор липидов и детергента, концентрация белка и количественное соотношение липид/ белок. Так, при использовании "жидких" липидов варьирование этого соотношения может приводить к появлению всего спектра упомянутых выше структур. Для получения кристаллов обычно приходится проводить изучение влияния на характер упаковки белков в мембранах и таких параметров, как pH, ионная сила, наличие многовалентных ионов. В некоторых случаях необходимо также присутствие специфических лигандов, стабилизирующих белок в одном из конформационных состояний. Существенное влияние могут оказывать также температура и скорость процесса реконструкции, т.е. удаления детергента. [c.181]


    Первой теоретической трактовкой экспериментальных данных о денатурации белков явилась разработанная Дж. Брандтсом в 1964 г. термодинамическая теория двух состояний [35]. Согласно этой теории, белковая молекула в растворе представлена целым рядом (в общем случае неограниченным) микросостояний. Все они входят в состав либо распределения N (нативное макросостояние белка), либо D (денатурированное макросостояние). Состояния N и D характеризуются усредненным по всем макросостояниям параметром а, являющимся количественным выражением различных физических или химических свойств белка. На рис. III. 1 приведено графическое изображение процесса тепловой денатурации белка, отвечающего переходу между двумя состояниями и, следовательно, описывающегося теорией Брандтса. Энергетическая шкала охватывает всю систему белок—растворитель. Теория Брандтса сделала возможным относительно простой термодинамический анализ конформационного перехода N D. Используя экспе- [c.348]

    Известны случаи прямого, вполне очевидного несоответствия процесса денатурации двухстадийному приближению. Это проявляется, например, у карбоангидразы при ее денатурации гуанидингидрохлори-дом в различном характере экспериментальных кривых и типичных для двухстадийного процесса зависимостей [41]. У стафилококковой пени-циллиназы отклонения от модели Брандтса обнаруживаются в несовпадении характера изменений при денатурации различных физических параметров. Так, если судить по вязкости и УФ-поглощению, белок совершает свой единственный конформационный переход и полностью денатурирует при 0,5 М гуанидингидрохлорида, а согласно спектрам дисперсии оптического вращения (ДОВ), первые конформационные изменения происходят только при 1,5 М концентрации того же денатуранта. Проводившие эти исследования Б. Робсон и Р. Пейн сделали вывод, что в интервале концентраций 0,5—1,5 М гуанидингидрохлорида в растворе существует в заметном количестве третье промежуточное конформационное состояние белка [42]. [c.351]

    Важная роль Са + в регуляции метаболизма все более увеличивает число примеров использования флуоресценции для изучения этого процесса. Кальмодулин — белок, регулирующий Са-чув-ствительность многих клеточных ферментов, является мощным модулятором клеточных (мембранных) процессов. Долгое время" исследователи не находили методов, позволяющих контролировать его функции. Оказалось, что при взаимодействии с кальцием кальмодулин переходит в активное состояние, изменяя свою конформацию этот конформационный переход отражается на параметрах флуоресценции хромофора, если таковой присоединить к молекуле кальмодулина. Простой способ сделать функции каль-модулина видимыми — дансилирование. Дансил-кальмодулин обладает специфическим спектром флуоресценции, чувствительным к присутствию двухвалентных ионов, а также белков и мембранных липидов, с которыми он способен связываться. Таким образом, можно оценить связывание с кальмодулином гидрофобных лигандов. [c.83]


Смотреть страницы где упоминается термин Конформационные параметры белков: [c.24]   
Биохимия Том 3 (1980) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные



© 2025 chem21.info Реклама на сайте