Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны белков

    Твердо установлено, что место связывания цитохрома С с цитохромом с локализовано на внешней поверхности внутренней митохондриальной мембраны (у бактерий — цитоплазматической мембраны). Белок заякорен в мембране единственным гидрофобным сегментом, локализованным вблизи С-конца. Этот сегмент может быть отщеплен протеазой. [c.85]

    Следует учесть возможность агрегации молекул красителей, поэтому, как правило, необходим независимый контроль размеров их частиц. Ряд методических сложностей может возникнуть и в случае оценки размеров пор с помощью растворов белков. Так, белок может частично забивать поры мембраны, снижая ее пористость. В связи с этим поиск модельных систем, в частности органозолей, для калибровки мембран представляет собой и в настоящее время актуальную задачу. Органозоли получают диспергированием металлов в органическом растворителе [114]. [c.94]


    Мембрана проницаема для малых ионов, и поэтому ионы хлора будут двигаться справа налево, так как ионы стремятся равномерно распределиться по всему объему. Каждый ион хлора, проходящий через мембрану, должен сопровождаться ионом натрия, иначе с внешней стороны мембраны накапливались бы положительные заряды. Пусть х означает концентрацию, которой достигли ионы хлора за время установления равновесия. Белок не может диффундировать через мембрану и остается с ее внутренней стороны. В результате перераспределения при равновесии система будет находиться в следующем состоянии  [c.356]

    Белок инсулин (разд. 14.3) представляет собой гормон, вырабатываемый поджелудочной железой и выделяемый непосредственно в кровь. Он стимулирует перенос глюкозы и некоторых других сахаров, так же как и витамина С, через клеточные мембраны. [c.419]

    Возможно также, что имеет место кооперативный процесс передачи сигнала от одной из молекул родопсина на другой белок, находящийся на некотором расстоянии и контролирующий проницаемость мембраны. Можно даже допустить, что кооперативный процесс развивается настолько широко, что вдоль мембраны диска распространяется какой-то реальный физический сигнал, достигающий края диска и приводящий к генерации определенного химического сигнала вблизи плазматической мембраны. [c.67]

    В то время когда проводилось картирование г//-области, мало что было известно о функциях белков, детерминируемых этими двумя ци-стронами. Сейчас же мы знаем, что как белок гПА, так и белок гПВ включаются в мембраны бактериальных клеток, инфицированных фагом [132, 133]. Там они облегчают лизис зараженных клеток, в результате чего стерильные пятна, образуемые г//-мутантами, бывают больше по размеру, а их края — более четкими, чем в случае стандартных бляшек. [c.251]

    Каков механизм действия медиатора на постсинаптическую мембрану В случае ацетилхолина он состоит в деполяризации мембраны и увеличении проницаемости по отношению к ионам натрия и калия. Собственно, это, по-видимому, те же изменения мембраны, которые обусловлены возникновением потенциала действия (гл. 5, разд. Б, 3) при проведении нервного импульса. Ацетилхолин связывается со специальным рецептором, в результате чего натриевые каналы в мембране каким-то образом открываются. Из электрических органов электрического угря недавно был выделен белок большого молекулярного веса, обладающий, по полученным данным, свойствами рецептора ацетилхолина [45]. Имея мол. вес 330 ООО, этот белок представляет собой, видимо, тример из субъединиц с мол. весом =110 000, в свою очередь состоящих из 2—4 пептидов с мол. весом 34 ООО—54 ООО. Каким образом функционирует этот рецептор, пока неизвестно (гл. 5, разд. В, 5). [c.332]


    Гидрофобные а-спиральные участки интегральных белков обычно содержат от 17 до 26 аминокислотных остатков, что вполне достаточно, чтобы полипептидная цепь однократно пересекла М. б. В белках, к-рые пронизывают М. б. насквозь, такие гидрофобные тяжи соединяют между собой полярные области белковой молекулы, находящиеся на противоположных сторонах мембраны. У белков, расположенных только на одной стороне М. б. и погруженных в нее лишь частично, а-спирали служат своеобразным гидрофобным якорем , прочно удерживающим белок в мембране. В нек-рых случаях заякоривание белков в М.б. происходит при помощи ковалентно связанных с ними липидов. [c.29]

    Полезно сравнить эти размеры с размерами самых мелких клеточных структур например, жгутик бактерии имеет диаметр 13 нм, а толщина клеточной мембраны составляет - 8—10 нм. Из кирпичиков, эквивалентных по размеру цепи из 300 остатков, могут быть построены жгутики бактерий или микротрубочки эукариот. а-Спиральный полипептид может пройти сквозь клеточную мембрану, выступая с обеих сторон, тогда как глобулярный белок с той же длиной цепи целиком уместится внутри мембраны. [c.103]

    Опишите строение биологических мембран и специфические функции липид-, белок- и углевод-содержащих компонентов. В чем состоят различия между внутренней и наружной поверхностями мембраны  [c.398]

    Специфические флуоресцирующие антитела, специфичные к цитохрому с, связываются только с С-стороны внутренней мембраны, а антитела к цитохромоксидазе — с обеих сторон это дает основание думать, что этот белок пронизывает всю мембрану [66, 66а]. Одиако окисление цитохрома с (с участием цитохрома а) происходит только на С-стороне, а восстановление Ог (при участии цитохрома аз) — только на М-стороне [66]. Далее, антитела к фактору сопряжения , образующего шишковидные выступы, связываются только со стороны матрикса. [c.393]

    Впоследствии Дж. Даниелли в совместной работе с В. Стейном (1956) несколько усовершенствовал предложенную ранее модель, чтобы учесть возможность гидрофобных взаимодействий неполярных боковых цепей аминокислотных остатков с липидными молекулами, а также согласовать ее с уже известным в то время фактом облегченной диффузии через мембрану некоторых низкомолекулярных водорастворимых веществ. Было предположено, что белок на поверхности мембраны находится в развернутой конформации, а его алифатические цепи частично проникают в липидный бислой (рис. 313). На отдельных участках мембраны белок полностью пронизывает липидный бислой. формируя в нем поры, через которые могут транспортироваться различные водорастворимые веществе. [c.581]

    В бислой определенного липидного состава [588, 589]. Широких систематических исследований по двухмерной кристаллизации мембранных белков до настоящего времени не проведено. Поэтому эмпирический подход все еще является основным. Однако результаты, полученные в ходе изучения нескольких мембранных белков, позволяют выделить ряд факторов, влияющих на формирование кристаллов. В общем случае кристаллизация реконструкцией является более многопараме-торным процессом, чем в случае кристаллизации без полной солюбилизации мембран. В зависимости от условий реконструкция белков в липид может приводить к образованию различных структур много- и однослойных протеолипосом, трубчатых структур, плоских мембран. Наиболее удобны для электронно-микроскопического изучения плоские мембраны. Необходимо также, чтобы реконструированный в такие мембраны белок имел "плотную упаковку". Для получения требуемых структур определяющими являются выбор липидов и детергента, концентрация белка и количественное соотношение липид/ белок. Так, при использовании "жидких" липидов варьирование этого соотношения может приводить к появлению всего спектра упомянутых выше структур. Для получения кристаллов обычно приходится проводить изучение влияния на характер упаковки белков в мембранах и таких параметров, как pH, ионная сила, наличие многовалентных ионов. В некоторых случаях необходимо также присутствие специфических лигандов, стабилизирующих белок в одном из конформационных состояний. Существенное влияние могут оказывать также температура и скорость процесса реконструкции, т.е. удаления детергента. [c.181]

    Другая весьма важная особенность, обнаруженная Т. Грэмом, заключалась в том, что быстро диффундирующие вещества легко проходили через перепонки животного и растительного происхождения — мембраны. Вещества второй группы, к которым относились клеевые вещества — желатина, гуммиарабик, крахт-гал, яичный белок, задерживались мембранами. Т. Грэм назвал их коллоидами (от латинского слова olla — клей) в отличие от веществ первой группы, которые он назвал кристаллоидами. [c.381]

    Равенство произведений концентраций разнозаряженных ионов по обе стороны мембраны совпадают с равенством сумм концентраций (т. е. сумм числа ионов) только при отсутствии в клетке белка (т. е. при с = 0). Если же в клетке содержится белок, то суммы концентраций ионов по обе стороны мембраны будут не одинаковы, [c.195]

    Равенство произведений концентраций разнозаряженных ионов по обе стороны мембраны совпадает с равенством сумм концентраций (т. е. сумм числа ионов) только при отсутствии в клетке белка (т. е. при Св==0). Если же в клетке содержится белок, то суммы концентраций ионов по обе стороны мембраны будут не одинаковы, что обусловит возникновение разности потенциалов (мембранного потенциала). [c.226]


    Рассмотрим систему, в которой белок может быть представлен в виде R Na . Весь белок находится в растворе с внутренней стороны мембраны и не может проходить через нее. Пусть по другую сторону мембраны находится раствор Na l, т. е. Na и С1 находятся с внешней стороны мембраны. Схематическое описание системы дано ниже  [c.356]

    После гипотезы Даниэлли и Дэвсона предложены разнообразные модели строения биомембран. Развитие представлений о строении биомембран изложено в ряде обзоров (см., например, [227, 228]). Наибольшую популярность в настоящее время получила мозаичная модель биологической мембраны [229], согласно которой функциональные белки погружены и диффундируют в жидкообразном липидном бислое. Белок погружен в бислой таким образом, что полярные и ионизованные группы взаимодействуют с водой, а гидрофобные части — с углеводородными цепями липидов. [c.167]

    Глюкозо-6-фосфатаза — интегральный белок микросомальных мембран, Активный центр фермента обращен внутрь везикул, поэтому для полного выявления его активности и изучения кинетических свойств необходима обработка мембранного препарата поверхностноактивными веществами — детергентами. Детергенты представляют собой специальную группу липидов, относящихся к классу растворимых амфифиль-ных соединений, т. е. соединений, имеющих в своей структуре как гидрофильные, так и гидрофобные участки. В зависимости от пространственной структуры, соотношения гидрофильной и гидрофобной зон, наличия заряженных групп детергенты обладают различным характером действия на биологические мембраны от мягкого, вызывающего лишь дезориентацию структурных компонентов мембран, до значительно выраженной их солюбилизации и растворения мембран. [c.370]

    Нейроны характеризуются необыкновенно высоким уровнем обмена веществ, значительная часть которого направлена на обеспечение работы натриевого насоса в мембранах и поддержание состояния возбуждения. Химические основы передачи нервного импульса по аксону уже обсуждались в гл. 5, разд. Б, 3. Последовательное раскрытие сначала натриевых и затем калиевых каналов можно считать твердо установленным. Менее ясным остается вопрос, сопряжено ли изменение ионной проницаемости, необходимое для распространения потенциала действия, с какими-либо особыми ферментативными процессами. Нахманзон указывает, что ацетилхолинэстераза присутствует в высокой концентрации на всем протяжении мембраны нейрона, а не только в синапсах [38, 39]. Он предполагает, что увеличение проницаемости к ионам натрия обусловлено кооперативным связыванием нескольких молекул ацетилхолина с мембранными рецепторами, которые либо сами составляют натриевые каналы, либо регулируют степень их открытия. При этом ацетилхолин высвобождается из участков накопления, расположенных на мембране, в результате деполяризации. Собственно, последовательность событий должна быть такова, что изменение электрического поля в мембране индуцирует изменение конформации белков, а это уже приводит к высвобождению ацетилхолина. Под действием аце-тилхолинэстеразы последний быстро распадается, и проницаемость мембраны для ионов натрия возвращается к исходному уровню. В целом приведенное описание отличается от описанной ранее схемы синаптической передачи только в одном отношении в нейронах ацетилхолин накапливается в связанной с белками форме, тогда как в синапсах — в специальных пузырьках. Существует мнение, что работа калиевых каналов регулируется ионами кальция. Чувствительный к изменению электрического поля Са-связывающий белок высвобождает Са +, который в свою очередь активирует каналы для К" , последнее происходит с некоторым запозданием относительно времени открытия натриевых каналов, что обусловлено различием в константах скоростей этих двух процессов [123]. Закрытие калиевых каналов обеспечивается энергией гидролиза АТР. Имеются и другие предположения о механизмах нервной проводимости [124]. Некоторые из них исходят из того, что нервная проводимость целиком обеспечивается работой натриевого насоса. [c.349]

    Схема мозаичной модели клеточной мембраны 1 - полярная головка молекулы липнла, 2-углеводородная цепь молекулы липида, 3 - интегральный белок [c.29]

    Молекула Т. содержиг два анионсвязывающих участка, один из к-рых расположен вблизи каталитич. центра и ответствен за узнавание фибриногена. Со вторым связываются гепарин и др. полисахариды, а также гарудин (белок, вырабатываемый слюнными железами мед. пиявок состоит из 65 аминокислотных остатков) и клеточные мембраны. [c.13]

    Малые строительные блоки, мономеры, в клетке соединяются в гигантские макромолекулы, или полимеры, в которых мономерные звенья связаны прочными ковалентными связями. Одни полимеры состоят всего лишь из нескольких мономерных звеньев (олигомер), другие из сотен, тысяч и даже миллионов. Типичный белок содержит от 100 до нескольких сотен аминокислот, молекула ДНК Е. oli состоит из 4-10 пар нуклеотидов, а сильно разветвленная молекула крахмала содержит свыше миллиона сахарных звеньев. Одни молекулы биополимеров представляют собой линейные цепочки, другие — разветвленные.. Иногда цепи полимера скручиваются с образованием жесткой цилинд-рической спирали, стабилизированной большим числом слабых вторичных связей. Но, как правило, такие структуры имеют значительно более сложную и нерегулярную конформацию. Довольно часто цепи полимера прилегают одна к другой, образуя сетчатые структуры, волокна,, мембраны. В отдельных случаях (например, в коллагене соединительной ткани) молекулы белка прошиты в поперечном направлении сильными ковалентными связями. Однако обычно макромолекулы в клетках связаны друг с другом более слабыми электростатическими и вандерваальсовыми силами. [c.67]

    Связывающие белки подошли бы на роль подвижных переносчиков в процессе облегченной диффузии, однако большая часть выделенных белков принадлежит, по-видимому, к системам активного транспорта, и их функция в процессах переноса до сих пор окончательно не установлена. Согласно одному из предположений, связывающий белок обладает сильным сродством к транспортируемому веществу (субстрату) и прочно связывается с ним на наружной поверхности летки. Образовавшийся комплекс белок—субстрат далее диффундирует к внутренней i TopOHe мембраны. Здесь в результате процесса, сопряженного с самопроизвольно протекающей экзергонической реакцией, например с гидролизом АТР, конформация бел1ка меняется таким образом, что его сродство к субстрату уменьшается. В результате транспортируемое вещество переходит в клетку, а связывающий белок диффундирует обратно к наружной поверхности. Там его конформация возвращается к исходной, вероятно, под влиянием химических воздействий. [c.359]

    Наружные мембраны митохондрий могут быть разорваны путем осмотического шока И отделены от внутренних мембран [64]. Анализ фракции наружных и внутренних мембран показывает, что наружные мембраны имеют меньшую плотность ( 1 1 г/см ), чем внутренние Они легко прО(ннцаемы для большинства веществ с мол. весом 10 000 и ниже. Отношение фосфолипид/белок весьМа высокое ( 0,82 по весу), экстракция фосфолипидов ацетоном разрушает мембрану. Для этих фосфолипидов характерно низкое содержание кардиолипина и высокое содержание фосфоинозита и холестерйна. Убихинона в этих мембранах нет. Внутренняя мембрана (плотность 1,2 г/см ) для многих соединений непроницаема. Фактически, за исключением нейтральных молекул с мол. весом <150, проницаемость для всех других соединений жестко контролируется. Отношение фосфолипид/белок во внутренней мембране имеет низкое значение (/ 0,27) кардиолипин составляет 20% общего содержания фосфолипидов. Во внутренней мембране присутствуют убихинон и другие компоненты дыхательной цепи. [c.392]

    Преобладающая структура листьев — это аппарат хлоропластов. На мембраны хлоропластов приходится 90—95 % мембран клеток листьев шпината [79]. Один только белок хлоропластов — рибулозобисфосфаткарбоксилаза составляет от 23 до 50 % общего количества растворимых белков листьев [100]. Неудивительно, что в этих условиях на всю совокупность хлоропластных белков, включающую ламеллярные и другие растворимые белки, может приходиться до 75 % белков листьев [102]. [c.239]

    М — мембрана, В — регулировочный вентиль белые кружки — вода черные соль со штрихами--макромолекулы (белок) а — обратный осмос бультрафильтрация. [c.443]

    Рицин представляет собой двухсубъединичный белок (гликопротеид) с молекулярной массой 62000 дальтон. В-субъединица (31400 дальтон) является собственно лектином и способна специфически связываться с галактозными остатками на внешней стороне мембраны животной клетки. А-субъединица (30000 дальтон) обладает неиденти-фицированной ферментативной активностью и ответственна за ингибирование белкового синтеза в цитоплазме. Две субъединицы скреплены вместе дисульфидным мостиком. Прикрепление токсина к мембране ведет к его погружению в нее, восстановлению дисуль- [c.217]

    Похожая добавочная N-концевая последовательность оказалась свойственной и растущим цепям ряда бактериальных белков, выводимых (экспортируемых) из цитоплазмы (см. табл. 3). В случае грамотрицательных бактерий этот экспорт белков происходит, либо в периплазматическое пространство (например, щелочная фосфатаза, мальтозосвязывающий белок, арабинозосвязывающий белок, пенициллиназа), либо далее во внешнюю мембрану (липопротеид внешней мембраны, X-рецептор). Начало синтеза экскретируемых белков приводит, по-видимому, к взаимодействию их гидрофобной N-концевой последовательности с внутренней цитоплазматической мембраной бактериальной клетки, так что они далее синтезируются на мембраносвязанных рибосомах. В течение элонгации (или в некоторых случаях после нее) может происходить отщепление N-концевой последовательности. По завершении синтеза, после терминации трансляции, готовый белок проваливается в периплазматическое пространство и далее, в зависимости от гидрофобности (гидрофильности) своей поверхности, либо остается в пери-плазматическом пространстве как водорастворимый белок, либо интегрируется во внешнюю мембрану. Здесь, как видно, имеется большая аналогия с ситуацией для секретируемых белков в эукариотических клетках. [c.280]

    Отщепление сигнальной последовательности у люминальной стороны мембраны, обращенной в межмембранный просвет эндоплазматического ретикулума, по-видимому, приводит к тому, что гидрофобность растущего пептида уменьшается, и его пребывание в липидном бислое становится менее выгодным, чем переход в водную фазу межмембранного просвета. Соответственно, в зависимости от аминокислотного состава и последовательности, в водную фазу будут вытолкнуты либо лишь его водорастворимая часть (скажем, N-концевая часть), как в случае многих трансмембранных белков, либо весь белок по завершении его синтеза, как в случае секретируемых белков. Естественно, переход в водную фазу должен сопровождаться перестройкой пространственной структуры, приобретающей глобулярную конформацию (гидрофобные остатки обращаются внутрь глобулы или глобулярного домена, в то время как гидрофильные экспонируются наружу). [c.285]

    Кальциевый насос — типичный хорошо исследованный мембранный белок. Саркоплазматический ретикулум из мышц [701, 702] представляет собой трубчатую систему с высокоспецифической мембраной, единственная функция которой состоит в освобождении и накоплении ионов кальция [703, 704]. Это отражается в том обстоятельстве, что один белок с молекулярной массой 100 ООО так называемый Са -транспортирующая АТРаза или Са +-насос, составляет более 50 о массы мембраны и 80% общего содержания белков в мембране. Этот белок, представляющий собой цилиндр диаметром [c.267]

    Более ранние теории, в которых иредиолагалось, что некоторую роль играет растворимый кремнезем. Они базировались на том, что монокремневая кислота способна вступать во взаимодействие с ДНК или с РНК и вызывать изменение в ферментативных системах. Согласно наиболее распространенной теории, кварц растворяется с образованием растворимого мономерного кремнезема. Этот процесс сам по себе безвреден, однако мономерный кремнезем полимеризуется затем до поликремневой кислоты, которая, как известно, денатурирует белок и разрушает клеточные мембраны, т. е. в рез тьтате мономерный кремнезем оказывается цитотоксичным. [c.1067]

    Как видно из приведенных в табл. 25.3.1 данных, в миелине отношение липид белок выше, чем в других мембранах это соответствует специфической функциональной роли миелина. Напротив, для протекания высокоэффективных процессов окисления во внутренней мембране митохондрий необходимо присутствие нескольких ферментов и отношение липид белок у нее ниже. В мембране эритроцитов содержится относительно большое количество углеводов. Основной гликопротеин мембраны эритроцитов, гликофорин, как было показано [6], ориентирован на поверхности мембраны так, что Л -концевая часть его полипептидной цепи, несущая все ковалентно связанные остатки углеводов, выступает во внешнюю среду такими поверхностными олигосахаридами являются некоторые групповые антигены крови и рецепторы, включая рецептор вируса гриппа. Схематическое изображение возможного расположения белков, липидов и углеводов в биологической мембране, приведенное на рис. 25.3.1, основано на жидкомозаичной модели [7]. Полярные молекулы липидов образуют бимолекулярный слой (см. разд. 25.3.3), тогда как белки могут быть или связаны с поверхностью (так называемые внешние белки), или внедрены в бислой (так называемые внутренние или интегральные белки). В некоторых случаях белок может пронизывать бислой. Жидкомозаичная модель завоевала всеобщее признание предполагают, что мембрана в физиологических условиях является текучей, а не статичной. Так, липидные и белковые компоненты в изолированных [c.109]

    Единственной в своем роде мембраной является пурпурная мембрана бактерии На1оЬас1егшт ка1оЫит в ней содержится только один белок—бактериородопсин. Полная аминокислотная последовательность бактериородопсина не определена, однако установлена [27] последовательность аминокислот около места связывания фоторецептора (ретиналя) 01у-Уа1-5ег-Азр-Рго-Азр-Ьу8-Ьу5 -РЬе-Туг-А1а-Пе-Ме1 (звездочкой обозначено место связывания). [c.122]


Смотреть страницы где упоминается термин Мембраны белков: [c.48]    [c.181]    [c.471]    [c.68]    [c.348]    [c.357]    [c.254]    [c.604]    [c.263]    [c.353]    [c.354]    [c.355]    [c.390]    [c.374]    [c.393]   
Мембранная фильтрация (1978) -- [ c.325 , c.326 , c.332 ]




ПОИСК







© 2024 chem21.info Реклама на сайте