Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки тепловая денатурация

    Термолабильность ферментов. Скорость химических реакций зависит от температуры, поэтому катализируемые ферментами реакции также чувствительны к изменениям температуры. Установлено, что скорость большинства биохимических реакций повышается в 2 раза при повышении температуры на 10°С и, наоборот, снижается в 2 раза при понижении температуры на 10°С. Этот показатель получил название температурного коэффициента. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции. Так, при температуре, не превышающей 45—50°С, скорость реакции увеличивается согласно теории химической кинетики. При температуре выше 50° С на скорость реакции большое влияние начинает оказывать тепловая денатурация белка-фермента, приводящая к полному прекращению ферментативного процесса (рис. 4.16). [c.140]


    Разрушение природной (нативной) макроструктуры белка называется денатурацией. Первичная структура белка при денатурации сохраняется. Денатурация может быть обратимой, так называемая ренатурация, если, она приводит к легко восстанавливаемому изменению в структуре. Необратимая денатурация часто происходит при тепловом воздействии (например свертывание яичного альбумина при варке яиц), У денатурированных белков снижается растворимость, а главное — исчезает биологическая активность. [c.372]

    В большинстве случаев белки денатурируют при 50 — 60 С, а термостабильные белки — при температурах около 100 С. Температура, при которой 50% нативного белка подвергается денатурации, называется температурой перехода. Наглядным примером такого рода тепловой денатурации является свертывание белка при варке яиц. [c.103]

    Биохнмич. эффекты высоких Д. При Д в неск. сотен МПа происходит денатурация белков, при этом меняются их антигенные св-ва, снижается активность токсинов. Особенно чувствительны к Д. процессы образования связей белок-лиганд и белок-белок. Так, для белков характерно значив уменьшение скорости ассоциации с повышением Д. (AV положительны и могут исчисляться сотнями см /моль). Денатурирующее влияние Д. зависит от природы белка, т-ры и pH среды. Напр., овальбумин необратимо коагулирует при 800 МПа, тогда как р-ры альбумина не претерпевают изменений даже при 1,9 ГПа. Д. может препятствовать тепловой денатурации белка и даже вызывать ренатурацию белка, де- [c.621]

    Подобно белкам, нуклеиновые кислоты могут денатурировать. Этот процесс состоит в расхождении цепей двойной спирали ДНК и двухспиральных участков молекулы РНК (в частности, тРНК рис. 2-24). Денатурацию можно вызвать добавлением кислоты, щелочи, спиртов или удалением стабилизирующих структуру молекулы противоионов, например Mg +. В результате денатурации каждая из цепей молекулы приобретает форму беспорядочно свернутого клубка, поэтому данный процесс называют переходом спираль—клубок. Тепловая денатурация нуклеиновых кислот, как и белков, носит кооперативный характер (гл. 4, разд. В.7) и происходит в довольно узком интервале температур характерным параметром процесса является температура плавления. [c.142]

    Обе стадии невозможно отделить одну от другой. Сущность тепловой денатурации можно рассмотреть на примере глобулярных белков. Основная молекула глобулярного белка, как известно, состоит из одной или нескольких полипептидных цепей, сложенных складками и образующих клубки. Такая структура стабилизируется непрочными связями, среди которых большую роль играют водородные связи, образующие поперечные мостики между параллельными пептидными цепями или их складками. При нагревании белков происходит усиленное движение полипептидных цепей или их складок, что вызывает разрыв непрочных связей между ними. В результате этого наблюдается развертывание и перегруппировка складок, сопровождаемые перераспределением полярных и неполярных радикалов, причем неполярные радикалы концентрируются на поверхности глобул, понижая их гидрофильность, а следовательно, и растворимость. [c.370]


    Влияние температуры. Повышение температуры вызывает 0,25 %-ное увеличение растворимости белков сои на каждый градус в диапазоне от 15 до 18 С [79]. У рапса оптимальной для перевода в растворимое состояние является температура 45°С [43]. За пределами этой температуры проявляются неблагоприятные эффекты, которые свойственны всей совокупности белков (опасность тепловой денатурации). [c.424]

    Хотя действие излучения не аналогично тепловой денатурации, все же между обоими явлениями имеется тесная связь. Давно известно, что устойчивость белков к денатурации (если последняя характеризуется снижением растворимости белков) понижается под действием ионизирующего излучения [31]. Фрике [79, 80] показал, что относительно малые дозы рентгеновских лучей (33 000 р) не вызывают немедленно заметных изменений свойств яичного альбумина, но они ускоряют тепловую денатурацию. Результаты его работы показывают, что образование разрывов в полипептидных цепях может быть обнаружено только при повышении температуры, когда процесс развертывания специфической белковой структуры происходит с повышенной скоростью. Существование скрытых разрывов подтверждается низкой энергией активации этого процесса. Процесс развертывания сопровождается выигрышем энтропии меньшим, чем [c.229]

    При свертывании белки денатурируют и переходят в нерастворимое состояние. Механизм тепловой денатурации связан с перестройкой структуры белковой молекулы, в результате которой белок теряет свои нативные свойства и растворимость. Реакция денатурации протекает постепенно и ускоряется с повышением температуры поэтому слишком кратковременное нагревание может и не привести к свертыванию. [c.28]

    После достижения полной экстракции белков, т.е. перевода белков в растворенное состояние, приступают к разделению —фракционированию смеси белков на индивидуальные белки. Для этого применяют разнообразные методы высаливание, тепловую денатурацию, осаждение органическими растворителями, хроматографию, электрофорез, распределение в двухфазных системах, кристаллизацию и др. [c.26]

    Границы отдельных фракций выявляются недостаточно четко. Причиной этого может быть низкая ионная сила буферного раствора при достаточно высоком напряжении (см. стр. 50) или тепловая денатурация некоторых белков в результате локального выделения тепла при высоком напряжении. [c.66]

    Изменение белков при нагревании. Почти все белки при нагревании коагулируют. Большинство белков свертывается при 50—55 С. При продолжительном нагревании белки денатурируют и переходят в нерастворимое состояние. Кратковременное же нагревание может не привести к свертыванию. Реакция денатурации белка протекает постепенно и ускоряется с повышением температуры. Тепловая денатурация белка связана с изменениями в его молекуле, в результате чего он теряет свои нативные (природные) свойства и растворимость. Быстрее всего белки свертываются и осаждаются в изоэлектрической точке. [c.38]

    В пищевой технологии особое практическое значение имеет тепловая денатурация белков. Степень тепловой денатурации белков зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислоты, щелочи, спирт, ацетон). Все эти приемы широко используют в пищевой и биотехнологии. [c.17]

    ДЕНАТУРАЦИЯ. Макроструктура белка определяется весьма хрупким равновесием между различными силами притяжения и отталкивания, которые действуют между этим биополимером и окружающей его водной средой. Стоит только нарушить это равновесие, как вся структурная организация полипептида, кроме первичной, исчезнет ппыми словами, произойдет денатурация. В зависимости от степени нарушения структуры и от природы белка денатурация может быть либо обратимой, либо необратимой. Классическим примером необратимой денатурации является коагуляция яичиого белка при варке яиц, когда яичный альбумин (белок) претерпевает тепловую денатурацию. [c.412]

    Для уплотнения макаронного теста его подвергают механической обработке. Наиболее распространены теплый замес на воде с температурой 55—56 С. При этом более равномерно идет набухание компонентов муки, образование клейковины и не происходит денатурации белков. Полученное тесто после вакуумной обработки подвергают прессованию. Прессование проводят через специальные матрицы, форм отверстий которых и определяет тип и вид макаронных изделий. Температурный режим прессования влияет на гидратацию клейковинных белков, повышение температуры может привести к их частичной коагуляции, а- также окислению пигментов. Сырые макаронные изделия подсушивают, обдувая воздухом, а затем, после резки и раскладки, направляют на сушку. При сушке происходит потеря белками и крахмалом влаги, тепловая денатурация белков, возможен их частичный гидролитический распад и клейстеризация крахмала. [c.111]


    Тепловая денатурация белков. Свертывание большинства белков начинается уже при температуре 50—55". Воздействие высокой температуры ведет к тс пл()вой денатурации белков, в рс зультате котс рой про- [c.21]

    Природа углеводородов заметно влияет па повышение устойчивости белков к тепловой денатурации [161]. Особенно ярко это проявилось при исследовании тепловой денатурации 7-глобулина, отличительной чертой которого является наличие резкого плавления вторичной структуры при повышении температуры [162]. Температура конформационного перехода 7-глобулина в водном растворе при pH 9,2 равна 63°, в присутствии гептана 67°, декана и тетрадекана 66° С. Таким образом, в результате насыщения глобулы белка углеводородом температура денатурации повышается на 3—4 . [c.31]

    Активацию рассматривают как суммарный результат физико-химических процессов реорганизации структуры и снижения стабильности макромолекул и мембран. Их термодинамические и кинетические характеристики сходны с показателями тепловой денатурации белков и плавления нуклеиновых кислот. Все химические реагенты и воздействия, вызывающие активацию, влияют на структурную организацию клеточных биополимеров и мембран. Активация спор при низких значениях pH происходит в той же зоне, где и денатурация белков. Основной итог активации — подготовка клетки к следующему этапу прорастания - инициации. [c.107]

    Для глобулярных белков, таких, как яичный альбумин, необходимо было выяснить, не приводит ли солюбилизация углеводорода к денатурации. Для этого исследовали изменение вторичной структуры белка (методом оптического вращения) и третичной структуры (ро определению вязкости) до и после солюбилизации углеводорода в широком интервале pH. Опыты показали, что удельное оптическое вращение растворов яичного альбумина в интервале pH = 4,5— 10,5 оставалось постоянным и немного уменьшалось после введения бензола, вязкость после солюбилизации также уменьшалась вследствие понижения асимметрии молекул. Все это свидетельствует о том, что глобулы яичного альбумина после солюбилизации становятся более компактными и не происходит денатурация. Далее выяснялось Влияние солюбилизации на конформационную устойчивость яичного альбумина к тепловой и кислотно-щелочной денатурации. Оказалось, что глобулы яичного альбумина, солюбилизировавшие бензол, становятся более устойчивыми к тепловой денатурации 0,55%-ный водный раствор яичного альбумина денатурирует при 60°, а После солюбилизации углеводорода — при 70°. [c.395]

    Как мы уже видели, облучение белков вызывает изменения их молекулярного веса. Фибриноген [58,70] при облучении образует небольшие фрагменты и большие агрегаты. Растворы сывороточного альбумина быка [61—63] образуют большие агрегаты без образования мелких фрагментов, что установлено седиментационным анализом в ультрацентрифуге. Облучение 0,07%-ного водного раствора рентгеновскими лучами дозой 75 000 р при 25° вызывает преципитацию белка. Однако при 0 преципитации не происходит [62]. Выпадение белка можно замедлить или устранить повышением концентрации белка или добавлением солей. Это явление сходно с тепловой денатурацией. [c.227]

    Полученные в результате температурные зависимости для т и Ахх приведены на рис. 1У.19. Все приведенные на рисунке за-висимости оказались обратимыми по температуре обратимость пропадает после тепловой денатурации белка. [c.189]

    Сущность процесса денатурации недостаточно еще выяснена. Предполагается, что денатурация связана с определенными структурными изменениями самой молекулы белка, протекающими без разрыва внутренних пептидных связей. Внутримолекулярные связи ослабляются, гидрофобные участки, которые были ранее спрятаны в ядре, приходят в соприкосновении с водой. Вследствие этого поверхность белковой частицы гидрофибизируется и растворимость белка понижается. Возможно, что в белке при его денатурации появляются некоторые новые радикалы, нехарактерные для природного (нативного белка). Нативный белок, состоящий из скручивающихся пептидных цепей, подчиняется каким-то еще неустановленным закономерностям. При денатурации происходит раскручивание цепей. Освобождающиеся концевые группы образуют межмолекулярные связи, вследствие чего происходит коагуляция белка. Тепловая денатурация происходит только в присутствии воды. При нагревании сухого яичного белка до 100 °С денатурации не происходит. Добавление к раствору белков некоторых веществ, например сахарозы, в значительной мере предохраняет их от денатурации. [c.361]

    Эйринг и Стерн произвели квантово-механическую обработку явления денатурации белка и получили интересные результаты. Хорошо известно, что если нагреть растворы многих белков или обработать их различными реагентами (мочевина, спирт, крепкие кислоты, основания и т. п.), то белки претерпевают внутримолекулярные изменения, известные под названием денатурации. Наиболее характерными результатами денатурации являются 1) падение растворимости, 2) появление сульфгидриль-ных групп, 3) возрастание вязкости раствора молекул белка. Тепловая денатурация белков обладает огромным температурным коэфициентом, который, как показывает табл. 10, соответствует большой энергии активации. [c.67]

    Следует отметить, что хроматография в системе ХОФ-5 является мягким способом фракционирования и очистки, по крайней мере в случае РНК. Известно, например, что нативная РНК фага MS-2, кодируюш,ая только три белка (оболочки фага, репликазу и белок А) в опытах in vitro ведет инициацию их синтеза в пропорции 70 25 5. После мягкой тепловой денатурации РНК эти синтезы инициируются уже с одинаковой скоростью, что можно объяснить утратой специфической третичной организации молекулы фаговой РНК. Оказалось, что после очистки в хроматографической системе ХОФ-5 РНК фага MS-2 полностью сохраняла нативные пропорции инициации указанныз выше синтезов. То же самое было показано и для РНК фага QP [ ampbell et al., 1980]. [c.173]

    Очистка экстракта этанолом и тепловая денатурация балластных белков. Измерив объем фильтрата, помещают его в охлаждающую смесь (лед — Na l), добавляют при постоянном перемешивании сухой NH4 I до конечной концентрации 0,1 М, затем доводят pH экстракта до 9,0, осторожно приливая 5 М NH4OH. Перемешивают 30 мин, добавляют 1,5 объема охлажденного до —10° С — (—20° С) этилового спирта. Спирт добавляют медленно, по каплям из делительной воронки, перемешивая экстракт и следя за тем, чтобы температура смеси не повышалась выше О—2° С. Затем температуру смеси постепенно доводят на водяной бане до 20° С. Оставляют при этой температуре на [c.295]

    На основании результатов исследования тепловой денатурации 7-глобулина по изменению удельного оптического вращения и оптической плотности при разных температурах [161] были определены изменения энтальпии конформационных переходов (АЯ). Полученные величины АН показывают, что связывание углеводородов белками приводит к увеличению теплоты денатурации или, что то же самое, к повышению устойчивости нативной глобулярной конформации белка по отношению к денатурации теплом. При этом связывание 7-глобулином гептана увеличивает теплоту денатурации на 10 ккал/моль (от 55 до 65 ккал1молъ), связывание декана и тетрадекана — от 55 до 57 ккал1моль. Этот факт очень хорошо объясняется особенностями заполнения глобул белка этими углеводородами, что будет рассмотрено ниже. Спектрофотометрическое исследование тепловой денатурации 7-глобулина также показало повышение устойчивости молекулы белка в ре- [c.31]

    Спектры ПМР белков чрезвычайно сложны, однако в их расшифровке достигнуты весьма значительные успехи [170—175]. На рис. 2-41 приведены спектры ПМР -фермента рибонуклеазы, полученные при 60 и 220 МГц. Как легко видеть, при более высокой частоте разрешение выше. Обращает на себя внимание и тот факт, что после тепловой денатурации фермента (до 72,5°С) многие сигналы спектра, снятого при 220 МГц, оказываются более узкими. Это означает, что в результате денатурации все однотипные боковые группы белка попадают в примерно эквивалентное окружение. Кроме того, было показано, что спектры ПМР для белков, находящихся в кон- зормации статистического клубка, хорошо соответствуют спектрам, которые можно получить, исходя из стандартных химических сдвигов отдельных аминокислот [171], что согласуется с изложенным выше. [c.187]

    Гранулометрические показатели сырья должны быть подходя-Ш.ИМИ, насколько это возможно, для максимально полного и быстрого растворения белков. Поэтому контактируюш,ая с жидкостью поверхность частиц должна быть наибольшей, чтобы уменьшить расстояние между центром частицы и растворителем. Например, вполне пригодны обезжиренные хлопья сои, если их толщина достаточно мала (0,2 мм) [149]. Эта характеристика, связанная с перемешиванием среды, позволит лучше управлять скоростью диффузии белков в растворителе. Обширная поверхность хлопьев упрощает разделение белкового экстракта. Когда сырьем служит мука (например, бобовых, богатых крахмалом, — гороха и конских бобов), ее гранулометрические достоинства заключаются в однородности при размерах частиц от 100 до 150 мкм [161]. В самом деле, более мелкие размеры усложняют разделение твердой и жидкой фаз без реального выигрыша в растворимости или даже в скорости обработки. Кроме того, слишком энергичное измельчение может вызвать тепловую денатурацию сырья. Наоборот, использование более крупных частиц продлевает время растворения и повышает степень удержания белкового экстракта нерастворимым остатком. [c.430]

    Многие исследователи считают, что определяющая роль в термофилии принадлежит белкам, в первую очередь ферментным. С этих позиций основные температурные точки термофилов зависят от конформации одного или нескольких ключевых ферментов при минимальной температуре роста происходит переход от жесткой неактивной конформации белковых молекул к конформации с ограниченной гибкостью оптимальная температура роста определяет наиболее благоприятное конформационное состояние ферментных белков при максимальной температуре начинаются нарушения конформации белков и снижение их ферментативной активности, а выше этой температуры рост прекращается вследствие тепловой денатурации белков. [c.136]

    Дальнейшее развитие биохимии привело к открытию огромного числа ша-перонов, особенно у эукариот, где эти белки нередко специализируются на сборке вполне определенных структур. Эта группа белков известна также под названием белков теплового шока, поскольку их активный синтез начинается при повышенной температуре, по-видимому, для предотвращения повреждения разнообразных белков и их комплексов, претерпевающих частичную денатурацию при температуре выше допустимой. [c.114]

    Влияние температуры на активность ферментов. Согласно закону Ваит-Гоффа скорость химических реакций увеличивается примерно вдвараза при повышении температуры на (О С (коэффициент Q ,). Это прааило справедливо также и для ферментативных реакций, однако только а ограниченной области значений температуры. При повышении температуры свыше 40 — 50 происходит инактивация белкового катализатора из-за тепловой денатурации. Следовательно, ферментативные реакции отличаются от реакций, катализируемых соединениями небелковой природы, наличием температурного оптимума. Причиной быстрого падения активности является высокая величина коэффициента Qio для процесса тепловой денатурации белка. Следует отметить, что ферменты термофильных бактерий имеют весьма высокий температурный оптимум. [c.185]

    Низкие концентрации ПАВ увеличивали степень спиральности топо- и парамионизина, повышали температуру тепловой денатурации на 10—15°, способствовали повышению устойчивости белков к перевариванию трипсином [152]. Подобные результаты получены в работе Витвицкого [153]. Повышение термостабиль-ности комплексов миоглобина с ПАВ обнаружено в работе [154], причем эффект сильнее выражен для ja, С14 и С , чем для g и g. Увеличение конформационной стабильности трипсина при взаимодействии с фосфолипидами показано в работе [155]. Мосолов и Афанасьев [156], инкубируя трипсин при 37 С в фосфатном буфере (pH 7,8), содержащем жирную кислоту, наблюдали при одних значениях концентрации денатурирующее действие жирных кислот, а при других — защитное действие. [c.28]

    Сравнение данных по измерению удельного оптического вращения и дисперсии оптического вращения глобулярных белков в водных растворах и растворах, насыщенных углеводородом, позволило сделать вывод, что солюбилизированный углеводород практически не изменяет содержания спиральных структур в глобулах белков. Влияние солюбилизации углеводорода на устойчивость глобулярных белков к тепловой денатурации изучалось на примере яичного альбумина при pH 7,2, химотрипсина при pH 4,25 и 7-глобулина при pH 9,2 — по изменению удельного оптического вращения. Тепловая денатурация у-глобулина при pH 9,2 оценивалась также спектрофотометрически, а тепловая денатурация трипсина при pH 3,75 — по снижению ферментативной активности. [c.30]

    Влияние солюбилизации бензола на тепловую денатурацию химотрипсина изучалось также по изменению удельного оптического вращения во времени при 60° С (рис. 10, б). Скорость денатурации химотрипсина при 60° С в отсутствие бензола значительно больше скорости денатурации а-химотрипсипа, насыщенного бензолом. Скорость денатурации чистого а-химотрипсина, измеряемая по изменению удельного оптического вращения, составляет 0,05—0,07 град/ мин, тогда как с бензолом — 0,01 граЫмин. Эти результаты также показывают, что вследствие солюбилизации углеводорода глобулы белков приобретают дополнительную устойчивость к тепловой денатурации. [c.30]

    Всем хорошо известный пример тепловой денатурации — свертывание яичных белков при варке яиц. В результате разрыва водородных связей (рис. 16.6) и устранения других факторов, сгабилизи- [c.421]

    Б. Очистка аргиназы от балластных белков тепловой обра б о т к о й. Гомогенат наряду с исследуемым ферментом содержит большое количество других белков и ферментов ткани. Температура денатурации разных белков различна. Можно вызвать денатурацию значительного количества сопутствующих белков с помощью нагревания при 60 °С. Стабильность аргиназы к нагреванию в этих условиях выше по сравнению с другими, белками. [c.49]

    Холлис и сотр. [77] наблюдали высокопольную область спектра а-химотрипсина на частоте 100 МГц. Молекула имеет грубо сферическую форму [12], молекулярная масса равна около 25000. Тепловая денатурация а-химотрипсина изучалась путем измерения температурной зависимости ширины линий протонов алифатических боковых цепей. Результаты соответствуют двухпозиционному процессу денатурации (см. с. 355), что подтверждается и другими физическими измерениями. Однако до сих пор об этом белке с помощью ЯМР получена лишь минимальная информация. [c.383]

    С повышением темпердтуры падает вязкость подвижной фазы, а следовательно, и гидродинамическое сопротивление столбика сорбента соответственно сокращается время достижения равновесия. Теоретически верхним пределом температуры в колонке служит та величина, при которой наступает тепловая денатурация белков. На практике приходится работать при более низкой температуре, в особенности при наличии в исследуемой смеси протеаз и других гидролаз. В ряде случаев, в частности при обработке тканевых экстрактов, рекомендуется работать при температуре близкой или ниже О °С и в буфере, содержащем несколько процентов изопропанола. В этом нет необходимости, если рн среды не совпадает с оптимальной областью действия гидролаз, или в среде присутствуют ингибиторы протеаз, или выделение ведут в присутствие денатурирующих агентов, таких, как солянокислый гуанидин или мочевина, наконец, когда исследуемый белок отделяют с помощью специфического сорбента (например, при аффинной хроматографии) [1]. [c.422]

    Помимо исследования специфического взаимодействия белковых и липидных компонент мембраны, проявляющегося в процессах рецепции, метод спинового зонда используется и для изучения достаточно общих закономерностей липид-белковых взаимодействий. Так, в целом ряде работ (см., например, [ИЗ, 187]) показано, что присутствие белков в липиде приводит к снижению интенсивности вращения гидрофобных зондов, т. е. к повышению жесткости липидных слоев. Именно благодаря влиянию белков на состояние липидных областей мембран жирорастворимые зонды позволяют следить за состоянием белковых компонент мембраны. Так, в работе [1881 при исследовании температурной зависимости подвижности зонда СП (5, 10) в мембранах саркоплазматического ретикулума и в работах [189] при исследовании температурной зависимости подвижности зонда АХП(14) в мембранах бактерий Mi ro o us lysodeikti us, наряду с обычными структурными переходами в липидных областях мембраны, обусловленных самими липидами, обнаружены структурные переходы в липидных областях мембраны, которые исчезали при тепловой денатурации мембранных белков, что свидетельствует об индукции этих переходов конформационными превращениями мембранных белков. [c.181]

    ВИНОМ И сырыми яйцами. Сырые яйца богаты белками, минеральными веществами и витаминами, однако они содержат специфический белок-авмдмн, который связывает биотин и препятствует его всасыванию в кишечнике. Если же питаться не сырыми, а вареными яйцами, то недостатка в биотине не наблюдается, поскольку в результате тепловой денатурации авидин теряет способность связывать биотин. [c.834]


Смотреть страницы где упоминается термин Белки тепловая денатурация: [c.382]    [c.111]    [c.250]    [c.54]    [c.92]    [c.356]    [c.396]    [c.84]    [c.39]    [c.186]   
Органическая химия (1976) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Денатурация

Денатурация белка



© 2024 chem21.info Реклама на сайте