Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гем-белки также

    Гидратация белка также находится в определенной зависимости от pH раствора она наименьшая в изоточке. Вполне понятно, что с изменением формы белковых молекул и степени их гидратации связано изменение целого ряда свойств белков и их растворов. Так, например, вязкость растворов имеет минимум в изоточке, поскольку свернутые в плотные клубки молекулы оказывают меньшее сопротивление потоку жидкости, чем длинные цепеобразные молекулы. [c.192]


    Белок, сохраняющий свои характерные специфические свойства, называется нативным белком гемоглобин в том виде, в каком он находится в эритроцитах или в тщательно приготовленном растворе гемоглобина, в котором он все еще продолжает сохранять свое свойство обратимо соединяться с кислородом, называется нативным гемоглобином. Многие белки очень легко теряют присущие им специфические свойства. Тогда говорят, что они денатурированы. Гемоглобин можно денатурировать просто нагреванием его раствора до 65 °С. В результате такого нагревания он коагулирует, образуя нерастворимый коагулят кирпично-красного цвета. Большинство других белков также денатурируется при нагревании приблизительно до такой же температуры. Яичный белок, например, представляет собой раствор, состоящий главным образом из белка овальбумина с молекулярной массой 43000. Овальбумин — растворимый белок. При нагревании его раствора примерно до 65 °С и выдерживании в течение некоторого времени при этой температуре овальбумин денатурируется, давая нерастворимый белый коагулят. Это явление наблюдается при варке яиц. [c.394]

    Белки могут выполнять множество функций. Некоторые из них — ферменты - катализируют реакции, как уже было описано. Другие служат гормонами — специальными веществами, выделяемыми некоторыми органами и разносимыми кровью к другим органам, где они вызывают биохимическую активность (например, ряд гормонов переключает деятельность женского организма на подготовку к беременности). Третьи - транспортные белки — служат переносчиками жизненно важных веществ в организме из одного места в другое. Гемоглобин - одна из таких молекул он разносит кислород от легких к тканям. Белки также служат структурным материалом тела. Волосы, мышцы, кожа, хрящи и ногти построены из белков (см. также табл. ГУ.б в главе о пище). [c.452]

    В КИСЛОЙ области pH (рН<2) адсорбция белков также может уменьшаться вследствие протонирования силанольных групп и устранения тем самым отрицательного заряда поверхности. В данном случае проблемы представляют очень малый ЭОП и возможная денатурация белков. Использование крайних значений pH для анализа биополимеров ограничивает селективность системы, поскольку разница в зарядах анализируемых веществ заметно уменьшается. Кроме того, выгодно иметь в качестве свободно изменяемого параметра значение pH. Скорость движения заряженных проб в КЗЭ определяется степенью их ионизации, которую можно легко регулировать величинами pH. Наилучших результатов можно достичь, выбирая высокие [c.66]

    При нагревании многие белки также денатурируются — свертываются (например, яичный белок) и тоже осаждаются из растворов, теряя способность растворяться в воде. [c.296]


    Наконец, слово изолят обозначает продукты, получаемые в ходе двух последовательных этапов обработки. Первый из них заключается в отделении нерастворимых веществ (крахмал, компоненты клеточных стенок и пр.) от естественно растворимых белков (белки листьев, клубней и т. п.) или избирательно растворяемых (белки семян, зерна). Второй этап состоит в регенерации этих белков, также избирательной, насколько это возможно. [c.362]

    Рассмотренные в этой главе методологические вопросы теоретического конформационного анализа были разработаны для исследования пространственного строения низкомолекулярных органических соединений. Что же касается нашей темы - структурной организации белков, то задача такого масштаба перед расчетным методом не ставилась, и поэтому многие важнейшие вопросы, вставшие на пути к априорному расчету нативных конформаций белковых макромолекул, остались незатронутыми. Так, даже в принципе не была обсуждена сама возможность использования классического подхода, предполагающего независимость электронного и конформационного состояний молекулы. Если считать справедливыми изложенные в этой главе бифуркационную и физическую теории структурной организации белка, то доказательство применимости механической модели к данному объекту является самой главной и прежде всего требующей ответа задачей. Однако принципиальная возможность использования полуэмпирического конформационного анализа в исследовании белков также еще не предопределяет положительного решения других вопросов. Необходима методология, специально разработанная для расчета пространственного строения белковых молекул. Верхним пределом применимости изложенного метода конформационного анализа, как показано ниже, являются лишь три- и в простейших случаях тетра- и пентапептиды. Таким образом, второй важнейший вопрос на пути к решению проблемы структурной организации белка заключается в создании специфического методологического подхода, в который существующий метод конформационного анализа вошел бы как составная часть. [c.107]

    Разумеется, другие рибосомные белки также могут вносить вклад в поддержание и стабилизацию рибосомной РНК, но, по-видимому, главным образом ее более локальных структур. [c.128]

    Внутренняя часть белка также содержит много полярных групп. [c.52]

    Ассоциация доменов в мультидоменных глобулярных белках также, по-видимому, имеет иерархическую природу. В частности, преобладающее одноцепочечное сочленение последовательно расположенных доменов и наблюдаемое симметричное расположение доменов указывают на то, что домены образуются до их ассоциации в белковой глобуле и что они сами по себе весьма стабильны. [c.127]

    Входит в состав белков также Р-окси-а-аминомасляная кислота (треонин)  [c.657]

    В живых организмах пептиды образуются ферментативным путем из аминокисло или их производных с помощью ферментов — синтетаз, или при частичном распаде белков (также ферментативном)  [c.668]

    При использовании диск-электрофореза в полиакриламидном геле для определения молекулярной массы белков также строят график зависимости между логарифмом молекулярной массы калибровочных белков и подвижностью белковых частиц в полиакриламидном геле, а затем, определив подвижность исследуемого белка, по графику находят его массу (рис. 1.11). Электрофорез проводят в присутствии детергента додецилсульфата натрия, так как только в этом случае наблюдается прямая пропорциональная зависимость между молекулярной массой и подвижностью белков. Белки с четвертичной структурой при этих условиях распадаются на субъединицы, поэтому метод находит широкое применение для определения молекулярной массы субъединиц белка. [c.46]

    Солевые связи в белках также стабилизируются водным окружением, так как при их образовании освобождаются ориентированные молекулы воды, окружающие заряженные группы. Тем самым появление солевой связи сопровождается увеличением энтропии воды. Этот выигрыш в свободной энергии более значителен, чем ее выигрыш, определяемый кулоновым взаимодействием зарядов [87]. Однако воздействие воды на солевую связь отлично от гидрофобного взаимодействия — солевые связи усиливаются, а гидрофобные ослабляются при добавлении неводных растворителей [101]. [c.233]

    Обратимое осаждение. Белковые вещества осаждаются из растворов прибавлением небольшого определенного количества кислоты. Дальнейшее прибавление кислоты ведет к растворению осадка. Небольшое определенное количество щелочи, прибавленной в кислый раствор белка, также может вызывать образование осадка и так же дальнейшее прибавление ее ведет к растворению его. Концентрированные растворы нейтральных солей вызывают осаждение протеинов, — они их высаливают из раствора. Удаление соли, вызвавшей осаждение, ведет к растворению протеина. Таким образом этот ряд реакций имеет обратимый характер. [c.22]


    Характер связей одинаков в фибриллярных и глобулярных белках. Молекулярный вес обоих основных структурных видов белка также примерно одинаков (от 30 ООО до 1 000 000 и более), но форма значительно отличается. У фибриллярных белков длина макроглобул в сотни и тысячи раз превышает их толщину так, макроглобула проколлагена с молекулярным весом 680 ООО имеет длину 3000 А при толщине несколько ангстрем. Глобулярные белки имеют чаще не шарообразную, а веретенообразную форму, варьирующую у разных белков. Длина глобул обычно не превышает 300 А, а средний объем составляет 44 000 А . [c.180]

    Гидролиз белков также представляет собой многостадийный процесс, конечным продуктом которого являк тся аминокислоты. В организме этот процесс протекает с участием протеолитических ферментов (протеазы). [c.686]

    Довольно успешно ионообменную хроматографию применяют и для фракционирования белков рибосом. Большинство этих белков также имеет щелочной характер, но они крупнее гистонов, поэтому здесь предпочтение отдается СМ-целлюлозе. Белки рибосом весьма склонны к агрегации, что заставляет вести их хроматографическое фракционирование в присутствии 6 М мочевины. [c.311]

    Образцы белка также можно наносить на предварительно полиме-ризованные гели. После полимеризации гели можно подвергнуть предварительному фокусированию (1 мА на трубку, 30—60 мин). Затем источник тока отключают и на поверхность геля наслаивают 30—80 мкл образца белка (30—100 мкг белка в расчете на одну зону), растворен- [c.100]

    Очевидно, окисление этого Люцифер ина вызывает электронное возбуждение какой-то другой молекулы, по всей вероятности, пурпурного белка , также необходимого для люминесценции. Полагают, что комплекс люциферина и пурпурного белка вступает в реакцию с люциферазой (на рис. 13-30 она сокращенно обозначена как Е—N1 2) -при этом высвобождается формильная группа, ранее участвовавшая образовании енольно-эфирной связи. Образующаяся альдегидная группа взаимодействует с аминогруппой фермента, а шиффово основание реагирует далее с кислородом [схема (13-40)]  [c.73]

    В бактериальных клетках отрицательно заряженные фосфатные группы ДНК могут быть в значительной степени нейтрализованы положительно заряженными полиаминами. Однако основные белки также стремятся частично одеть ДНК. В зрелых головках сперматозоидов рыб плотно упакованная ДНК нейтрализуется протамииами — специальными низкомолекулярными белками (с мол. весом - 5000), богатыми остатками аргинина. Сходные основные белки обнаружены в сперме млекопитающих [284]. Однако в соматических клетках, отрицательные заряды ДНК компенсируются главным образом положительным зарядом гетерогенных групп основных белков, известных под названием гистоиов. Существует пять классов гистонов, мол. вес которых составляет от 11 ООО до 21 500 [285—287]  [c.301]

    Кроме секретируемых белков, растущие полипептидные цепи ряда встроенных в мембрану белков также характеризуются временной сигнальной N-концевой последовательностью. Одним из первых изученных примеров такого рода был гликопротеид вируса везикулярного стоматита, который вместе с хозяйской мембраной участвует в построении вирусной оболочки. Этот белок, как оказалось, синтезируется с N-концевой сигнальной последовательностью, очень похожей на таковую секретируемых пребелков сигнальная последовательность необходима для присоединения транслирующей рибосомы к мембране эндоплазматического ретикулума дальнейщий синтез белка идет, таким образом, на мембраносвязанных рибосомах в ходе элонгации N-концевая последовательность из 16 аминокислотных остатков отщепляется в мембране. Другими словами, все это не отличимо от ситуации в случае водорастворимых секретируемых белков. Однако, в отличие от секретируемых белков, здесь окончательный продукт после термина- [c.280]

    Также как синтетические полипептиды, а-белки могут быть переведены в р-форму. Это достигается растяжением, иногда в специальных условиях. Рентгенограммы р-белков показывают, что их молекулярные цепи принимают при растяжении вытянутую конфигурацию. Водородные связи -в р-белках также, как в синтетических/полипептидах, направлены перпендикулярно оси волокна. р-Форма белков нестабильна и после удаления растягивающего усилия, как правило, вновь восстанавливается а-спиральная конфигурация цепей. Только один белок,— фиброин шелка в естественном состоянии существует в виде р-формы. Образование Р- Конфигурации цепей в фиброине шелка происходит в тот момент, когда шелковичный червь прядет шелковую нить. Образующиеся при этом большие силы давления развертывают молекулярные цепи белка. Стабильность образовавшейся р-конфигурации в нити фиброина шелка объясняется тем, что на отдельных фрагментах молекул этого белка скапливаются остатки с короткими боиовыми цепями — глицин, аланин, серин. Отталкивание боковых групп этих остатков во много раз меньше отталкивания больших боковых цепей других аминокислот. Поэтому Р-структуры, возникающие на отдельных фрагментах цепей фиброина шелка (в местах скоплений остатков с короткими боковым и дшями), оказываются относительно стабильными. Это подтверждается изучением р-структур синтетических полипептидов с короткими боковыми цепями, таких, как поли-(глицил- аланин). [c.543]

    Растворилюсть белков также сильно зависит от pH, с минимумом в изоточке (рис. 74) нри смещении от изоточки возрастают заряд и гидратация белковых молекул и повышается их растворимость, поэтому при высаливании белков всегда поддерживают pH близким к изоточке. [c.185]

    При филировании белков основным критерием служит молекулярная масса. Общепризнано, что в диапазоне 10—50 тыс. Да белки проявляют высокую склонность к филированию. Молекулы с очень малой массой дают прядильные растворы с чрезвычайно низкой вязкостью, образующие нестойкие белковые нити, которые быстро диспергируются в коагулирующем растворе. Наоборот, из белков с очень высокой молекулярной массой на этапе денатурации получаются прядильные растворы с очень сильной вязкостью, что делает невозможным прядение волокон. Некоторые белки также образуют очень густые гели в щелочной среде за счет появления межцепочечных ковалентных связей типа дисульфидный мостик , что вызывает необходимость подгонять, приспосабливать параметры филирования [97]. [c.537]

    Существовало и другое представление о белках, как об очень подвижных, ни на что не похожих веществах. Хотя оно было малопродуктивным, тем не менее его придерживалось большинство биохимиков. Их взгляды отражает следующее высказывание B. . Садикова, одного из авторов дикетопиперазиновой теории. В 1933 г., т.е. спустя десять лет после созданной им вместе с Зелинским теории, он писал "...белковые вещества являются не обычными, хотя и весьма сложными органическими соединениями, а органическими соединениями, своеобразными вследствие того, что они способны переходить в какое-то крайнее лабильное состояние, свойственное живому организму..., в виду своей сверхлабильности нативные белки не имеют постоянства состава и постоянства строения это вещества с неопределенным текучим составом и текучим строением" [3. С. 81]. От истинного строения белков такое представление находилось столь же далеко, как и представление Мульдера. Впрочем, высказанная Садиковым мысль о физической и химической неопределенности белков также не была оригинальна. Задолго до него Э. Пфлю-гер делил белки на "живые" и "неживые", а Э. Геккель представлял их в виде чуть ли не одушевленных бесструктурных микрочастиц организма, которым отказывал не только в детерминированной пространственной структуре, но и в постоянном химическом строении. [c.64]

    Первым примером искусственного слияния двух ферментов на генетическом уровне было сращивание двух ферментов, участвующих в биосинтезе гистидина в Salmonella typliimurium [581]. Этот пример показывает, что само по себе слияние генов не приводит к резкому изменению свойств белков. Каждый из двух ферментов состоит из двух идентичных субъединиц, и эта структурная особенность сохраняется после слияния генов. Ферментативные и спектральные свойства индивидуальных белков также остаются неизменными. [c.229]

    Вследствие доступности и важности белков сыворотки крови, особенно сывороточного альбумина, их чаше всего выбирают в качестве модели при изучении процессов связывания. Из анализа Скэтчарда известно, что связывание с белками является многоступенчатым равновесием, т. е. включает ряд центров связывания, у которых сродство к лиганду может быть различным. Вполне возможно, что суммарный результат и общая константа связывания могут оказаться различными для двух энантиомеров. Более того, исходя из часто демонстрируемой ферментами субстратной энантиоселективности можно предположить, что у других белков также возможно наличие центров сорбции, обладающих высоким сродством и энантиомерно-дифференцирующей способностью. [c.132]

    Здесь мы не будем рассматривать преднамеренную модификацию аминокислотных остатков в белках, которая, разумеется, щи-роко используется для изучения их структуры. Артефакты, образующиеся в результате нагревания белков или при обработке химическими препаратами для других целей, также не столь редки. Например, термическая обработка протеинов молока в результате взаимодействия глюкозы с е-аминогруппой лизина приводит к образованию кислотоустойчивых соединений пиридозина (1) и фу-ранозина (2) [7]. Использование глутарового альдегида для сщи-вания цепей белка также вовлекает в реакцию лизин, при этом образуется [8] пиридиниевое производное (3). [c.229]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    Биологические мембраны представляют собой динамическую структуру, компоненты которой подвержены быстрому метаболизму. Благодаря этому липвдное окружение мембранных белков обладает способностью в соответствии с изменением условий функционирования изменять свои физикохимические свойства упаковку, микровязкость, латеральную подвижность компонентов в бислое и т.д. Подавляющее больщинство мембранных белков функционирует в составе олигомерных ансамблей, например в дыхательной цепи митохондрий. Транспортные белки также организуют ассоциаты в бислое димеры (Са -АТФаза), тетрамеры (Ка /К -АТФаза) или даже более высокоорганизованные надмолекулярные комплексы. [c.316]

    В полиамфолитах и, следовательно, в биополимерах возможно образование солевых связей между катионными и анионными группами в одной цепи или в разных цепях. Исследования строения и свойств биополимеров обязательно должны учитывать их полиамфолитную природу, а, значит, pH и ионную силу среды. Структура нативных (т. е. биологически функциональных) молекул белков и нуклеиновых кислот в значительной мере определяется электростатическими, ионными, взаимодействиями. Не менее важны взаимодействия с малыми ионами окружающей среды. Взаимодействие белков с ионами К+, Na+, Са++, Mg+ определяет важнейшие биологические явления, в частности, генерацию и распространение нервного импульса и мышечное сокращение. Функциональная структура нуклеиновых кислот и их участие в биосинтезе белка также связаны с катионами щелочных и щелочноземельных металлов. [c.86]

    От цикла Кребса идут пути многих биосинтетических реакций — синтеза углеводов, липидов, пуринов, пиримидинов и пор-фиринов. Синтез белков также связан с циклом, в котором создаются предшественники ряда аминокислот. В то же время биологическое окисление служит источником энергии, запасаемой в АТФ. [c.425]

    Блюменфельд и Чернавскни (1973) обобщили эту модель применительно к любым ферментативным реакциям. Формулируется постулат, согласно которому конформациопное изменение субстратферментного комплекса, следующее за присоединением субстрата к активному центру фермента, включает в себя кроме разрыва старых и образования новых вторичных связей в макромолекуле белка также химические изменения субстрата. Элементарный акт ферментативной реакции заключается в конформа-ционном изменении макромолекулы (фермент-субстратного комплекса, ФСК), и скорость превращения субстрат—продукт определяется скоростью этого конформационного изменения. Можно представить каталитический разрыв связи А — В субстрата последовательностью четырех стадий  [c.440]

    Обратимся теперь к спектру времен релаксации для аллостерического белка, также исследованному Эйгеном [125]. [c.477]

    Кислые мукогюлисахариды в соединительной ткани связаны с белка- ми (см. стр. 602), поэтому для их выделения, как правило, проводят предварительное разрушение белков протеолитическими ферментами или расщепление углевод-белковых связей щелочами, после чего полисахариды экстрагируют растворами солей . Белки, также переходящие при этом в раствор, удаляют с помощью денатурирования. Смеси мукополисахаридов можно разделить на компоненты фракционированным осаждением спиртом в виде солей с различными катионами , но лучшие результаты дает фракционированное осаждение цетавлоном или ионообменная хроматография . Особенности химического поведения мукополисахаридов сделали чрезвычайно сложной задачу установления их строения. Даже идентификация моносахаридов после полного кислотного гидролиза (обычно одна из самых простых операций) является в мукополисахаридах трудной проблемой. Наличие в одной молекуле уроновых кислот и аминосахаров приводит к тому, что полисахариды гидролизуются лишь в жестких условиях, при которых освобождающиеся уроновые кислоты подвергаются интенсивному разрушению. Поэтому в последнее время работу по установлению строения этих веществ проводят на модифицированных полисахаридах, в которых сульфатные группы удалены, а все карбоксильные группы уроновых кислот восстановлены в первичноспиртовые. Ряд других классических методов установления строения полисахаридов применим к мукополисахаридам с трудом это относится к перйодат ному окислению, вызывающему разрушение остатков уроновых кислот вследствие сверхокисления, к метилированию, в применении которого успехи достигнуты сравнительно недавно. Основными методами, позволившими выяснить строение мукополисахаридов, послужили методы частичного гидролиза и частичного ферментативного расщепления. [c.541]


Смотреть страницы где упоминается термин Гем-белки также: [c.263]    [c.61]    [c.339]    [c.646]    [c.157]    [c.335]    [c.119]    [c.575]    [c.491]    [c.116]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте