Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент в реакции неполярных молекул

    При исследовании влияния растворителя на скорости реакций неполярных молекул, сольватация которых в растворе осуществляется главным образом за счет дисперсионных сил, большое значение в рассматриваемый период имела теория регулярных растворов Дж. Гильдебранда [153]. Регулярные растворы характеризуются, так же как и идеальные, беспорядочным распределением молекул растворителя и растворенного вещества. Поэтому при переходе от идеального раствора к регулярному величина коэффициента активности растворенного вещества определяется изменением энтальпийной составляющей свободной энергии. Учитывая очень малое изменение объема при переходе растворенного вещества из идеального раствора в регулярный, можно записать выражение этой зависимости в виде [c.69]


    Чтобы применять метод переходного состояния к реакциям с участием заряженных или полярных частиц, необходимо знать зависимость коэффициентов активности этих частиц от условий эксперимента. Электростатические взаимодействия проявляются на большом расстоянии на заряженные частицы в растворе влияют не только ближайшие соседние частицы, но и ионы и молекулы, находящиеся на довольно значительном расстоянии. Любые изменения удаленных частиц будут влиять на потенциальную энергию ионов и, таким образом, на их коэффициент активности. Для удобства можно разделить эти взаимодействия на два типа взаимодействие ионов с другими ионами в растворе и взаимодействие ионов с нейтральными полярными или неполярными молекулами. [c.446]

    Эти величины объясняют, почему в реакциях с неполярными молекулами, свободными радикалами наиболее реакционноспособными яи-ляются атомы 1 и 4, а не 2 и 3. В таких реакциях основное значенне имеет не величина заряда, а индекс свободной валентности. Хотя в сопряженных системах типа молекулы бутадиена я-электроны находятся в поле всего ядерного остова молекулы, заряд каждого электрона распределяется по всем атомам, в соответствии с вероятностью пребывания электрона около каждого атома. В связи с этим я-электронный заряд атома определяется квадратом коэффициента с, для 2р-орбитали данного атома, т. е. [c.33]

    Тем не менее, можно полагать, что циклопентадиенильные производные лантанидов, представляющие хорошо растворимые в органических растворителях МОС, являются наиболее перспективными комплексами для получения лазерного эффекта. Тем более, что поглощение самих Ср-лигандов расположено в УФ-области, далекой от спектральных областей эмиссии лантанидов, и не может быть помехой в получении хороших коэффициентов усиления. Возможность введения донорных молекул, таких, как изонитрилы, позволяет варьировать спектр поглощения органической части комплекса и удобна для выбора лазерного активного материала. Растворимость таких комплексов в инертных, неполярных растворителях и возможность подбора заместителей, с одной стороны, представляют удобство для работы, а с другой стороны, предохраняют вещества от фотохимических превращений при интенсивных облучениях, которые в случае активных и полярных растворителей почти всегда влекут за собой химические реакции распада или замещения лигандов. Замена атомов водорода в Ср-кольцах на фтор или метильные группы должна привести к уменьшению безызлучательных потерь. [c.52]


    Методы количественного учета влияния растворителя на скорость реакции, основанные на использовании электростатических моделей, неприменимы, если в качестве реагентов выступают неполярные молекулы, сольватация которых в растворе осуществляется в основном за счет дисперсионных сил. Определенные возможности для установления связи между скоростью таких реакций и природой растворителя возникают при использовании теории регулярных растворов Гильдебранта [37]. Регулярные растворы характеризуются беспорядочным распределением молекул растворителя и растворенного вещества, таким же, как в идеальном растворе. Следовательно, при переходе из идеального раствора в регулярный не происходит изменения энтропии, т. е. Д5 = О, и изменение коэффициента активности растворенного вешества определяется только энтальпийной составляющей свободной энергии / = ДС = ДД-- ГД5 = ДЯ = Я-Я д (V. 116) [c.238]

    Экстракция, сопровождающаяся гетерогенной химической реакцией на поверхности раздела. В настоящее время установлено, что медленные гетерогенные реакции часто происходят на поверхностях раздела жидкость—жид-костьзь о. В таких случаях второй постулат теории Уитмана (о равновесии на поверхности раздела) не может быть применен. Реакции этого типа происходят либо между молекулами растворенного вещества, либо между молекулами растворенного вещества и одного из растворителей. Типичными примерами таких реакций являются димеризация карбоновых кислот в неполярных растворителях, гидратация аминов и физическая экстракция с очень низким коэффициентом аккомодации на поверхности раздела. [c.67]

    Высокая плотность положительного заряда на поверхности мицеллы бромида цетилтриметиламмония должна стабилизировать отрицательно заряженные ионы и переходные комплексы, так что в этих случаях наблюдаемое ускорение реакций можно рассматривать как результат возрастания локальной концентрации ионов гидроксила вблизи субстрата, адсорбированного на поверхности мицеллы. Активность иона гидроксила должна быть постоянной для системы в целом, так что понижение коэффициента активности вблизи мицеллы должно приводить к возрастанию концентрации ионов гидроксила в этой области. Ускорение можно описать более непосредственно как следствие понижения коэффициента активности переходного комплекса реакции на поверхности мицеллы по сравнению с коэффициентами активности реагентов в объеме раствора. Это понижение вызывается гидрофобным взаимодействием с неполярными компонентами и электростатическим с заряжен-ныхми колшонентами переходного состояния. Этот вид бифункционального взаимодействия с малой молекулой, различные части которой при посредстве разных механизмов стабилизированы каждая в своем микроокружении на макромолекуле, по-видимому, полностью аналогичен взаимодействию субстратов с активными центрами ферментов. [c.311]


Смотреть страницы где упоминается термин Коэффициент в реакции неполярных молекул: [c.42]    [c.510]    [c.318]    [c.326]    [c.98]    [c.340]    [c.54]   
Кинетика реакций в жидкой фазе (1973) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулы неполярные

Реакция неполярных молекул



© 2024 chem21.info Реклама на сайте