Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярность химических частиц

    Объяснение химической связи в комплексах с помощью электростатических представлений. Теория, объясняющая образование комплексных соединений, впервые начала разрабатываться в 1916—1922 гг. в исследованиях Косселя и Магнуса (Германия). В ее основу были положены электростатические представления. Очевидно, ион-комплексообразователь притягивает к себе как ионы противоположного знака, так и полярные молекулы. С другой стороны, окружающие комплексообразователь частицы отталкиваются друг от друга при этом энергия отталкивания тем значительней, чем больше частиц группируется вокруг центрального иона. [c.216]


    Известно, что студни обладают упругими свойствами. Изучение механических свойств показало, что застудневание обусловлено образованием локальных связей между отдельными группами взаимодействующих др уг с другом молекул и мицелл. Следовательно, эта связь осуществляется -между ними в отдельных точках. Эти предпосылки легли в основу теории застудневания, предложенной С. М. Липатовым (1933 г.). Он справедливо указывает, что большинство лиофильных коллоидов, спо собных к застудневанию, имеет частицы не шарообразной, а цепочечно-палочкообразной формы. Доказано, что такую удлиненную форму имеет и коллоидная частица желатины, Химическая природа этих частиц такова, что наряду с гидрофобными частями молекулы или частицы имеются гидрофильные группы, которые обусловливают образование вокруг их гидратационных оболочек. Значит, гидратационная оболочка обволакивает не всю частицу лиофильного коллоида, а образуется, как уже указывалось, только вокруг полярных групп частиц. Для желатины, так же как и для белков вообще, такими полярными группами будут пептидные, аминные и карбоксильные группы. Поэтому форму гидратированной частицы желатины в изоэлектрическом пункте можно условно представить следующей схемой  [c.298]

    Современная теория растворов, объединяя физическую и химическую точки зрения, рассматривает процесс растворения как взаимодействие между частицами разной полярности. Полярность молекул выражается в том, что в силу неравномерного распределения электрических зарядов в одной части молекулы могут преобладать положительные заряды, а в другой — отрицательные. Полярность молекулы количественно характеризуют электрическим моментом диполя (см. 15.1). [c.70]

    Разрыв двухэлектронной связи А — В в зависимости от ее полярности и условий протекания процесса может быть двух типов. При разрушении связи с оттягиванием по одному электрону каждым атомом образуются свободные радикалы, т. е. химические частицы, имеющие неспаренный электрон (Н, С1, Ма, ОН, СНз и т.д.), и распад (диссоциация) вещества называется гомолитическим А—В—> [c.130]

    Главной причиной любого химического взаимодействия Берцелиус вслед за Дэви признавал электрическую полярность реагирующих частиц, но в отличие от Дэви полагал, что заряды присущи каждому отдельному атому, а не возникают в момент сближения разнородных атомов. Далее, предполагалось, что атом имеет два полюса, один из которых заряжен сильнее, что придает атому электроположительный или электроотрицательный характер, выраженный неодинаково у разных элементов. По этому признаку элементы могут быть расположены в ряд наиболее электроотрицательным является кислород, а наиболее электроположительным — калий. Атомы элементов тем легче и энергичнее реагируют, чем дальше друг от друга расположены элементы в указанном ряду. [c.33]


    В полярных жидкостях генерированный излучением избыточный (освобожденный из молекулы) электрон переходит в локализованное состояние, образуя сольватированный электрон [39]. Сольватированный электрон рассматривается как самостоятельная химическая частица, представляющая собой электрон в сферической полости, окруженной молекулами растворителя. Радиус полости составляет 0,25—0,3 нм в различных растворителях. Электрон делокализован между всеми ближайшими молекулами растворителя (для воды, согласно разным моделям, число ближайших молекул 3, 4 или 6). Различные молекулы соль-ватированного электрона обсуждены в [42]. [c.70]

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]

    Таким образом, свойства адсорбционно-сольватной оболочки, влияющие на устойчивость дисперсий с неполярной средой, помимо сорбционной способности материала частицы и ее заряда, зависят от химической природы неполярного растворителя и, главным образом, от присутствия в нем ионов и полярных молекул. Последние способны образовывать [c.28]

    Описанная структура полимера ведет себя подобно коагуляционной структуре. Сходство в поведении этих структур заключается в том, что для них характерны химические связи внутри частиц и на порядок меньше межчастичные взаимодействия. С увеличением полярности макромолекул уменьшается их гибкость, а для межмолекулярных взаимодействий становятся характерными все три типа сил Ван-дер-Ваальса. Наличие таких функциональных групп, как 0Н, —СООН, —ЫНг, обусловливает возникновение более прочных водородных связей. С ростом межмолекулярного притяжения полимер превращается в более твердое, менее эластичное и даже хрупкое вещество, теряющее плавкость и растворимость. Полимеры с химическими связями между макромолекулам (пространственные) нерастворимы и неплавки при нагревании. По свойствам они соответствуют конденсационным структурам. [c.391]

    Современная теория межмолекулярных взаимодействий представляет собой синтез и развитие химической и физической теорий. Главная роль в межмолекулярных взаимодействиях отводится химическим связям, возникающим между атомами, молекулами и ионами. Кроме того, рассматривается кулоновское взаимодействие заряженных частиц, коллективное взаимодействие электронов и ионов металла, полярных молекул с окружающей средой, межмолекулярное отталкивание, обусловленное повышением кинетической энергии электронов при малых межъядерных расстояниях. Считается, что межмолекулярные взаимодействия обусловлены электрическими полями атомных ядер и электронов, из которых состоят атомы и молекулы. Используется условное подразделение взаимодействий на слабые и сильные, близкодействующие и дальнодействующие, специфические и, неспецифические и т. д. [c.25]

    В этой теории не учитывалось строение металла и структура растворителя. Игнорирование роли полярного растворителя в свою очередь затрудняло теоретическую интерпретацию элементарного акта разряда для электрохимических реакций, не сопровождающихся разрывом или образованием химических связей, например Fe( N) + + е -> Fe( N)g . Поэтому в теории реорганизации растворителя определяющая роль в элементарном акте разряда отводится распределению диполей растворителя вблизи реагирующих частиц. Именно распределение диполей воды по этой теории позволяет осуществиться стадии разряда — ионизации. [c.296]

    Межфазный гальвани-потенциал в частных случаях может быть равен нулю. Для системы металл—раствор электролита это имеет место, когда концентрация раствора такова, что химические потенциалы иона в обеих фазах равны, т. е. y. = и согласно уравнению (XX 1.4) Ля з = С, но 0 0. Растворы такой концентрации называют нулевыми. В подобных системах на границе раздела фаз может возникнуть поверхностный скачок потенциала за счет ориентированной адсорбции полярных молекул или избирательной (преимущественной) адсорбции катионов или анионов. Его величина зависит от количества адсорбированных частиц. Адсорбционные эффекты обычно ограничены тонкими слоями, прилегающими к поверхностям контакта, и на объемные свойства фаз практически не влияют. Поэтому равновесный скачок потенциала металл—раствор электролита не зависит от адсорбции ионов или молекул в отличие от величин токов обмена и строения самой границы раздела фаз. [c.283]


    Между кинетически самостоятельными частицами (например, молекулами) растворенного вещества и растворителя химические -- илы не проявляются. Здесь действуют только межмолекулярные силы, за счет которых образуются определенные молекулярные комплексы различной степени прочности. При наличии в растворе ионов возможно возникновение и ионно-молекулярных комплексов, ) чем подробнее будет сказано ниже при рассмотрении процесса астворения полярных" (типа НС1) и нонных соединений в воде. [c.157]

    Теоретически установлено, что нефть в источнике залегания может образовываться из полярных компонентов, содержащих азот, серу, кислород, металлы, а также углеводороды с широким диапазоном изменения молекулярных масс, включая ароматические, нафтеновые, парафиновые вещества. Во время миграции нефти те компоненты, которые являются более полярными или более поляризующими, адсорбируются в первую очередь. Например, компоненты, содержащие аминовые нитрогены, порфирины, могут вести себя как катионы и адсорбироваться ria глинах. Это — одна из-причин формирования весьма неровных границ раздела нефть—вода, особенно в породах, содержащих небольшое количество глин. Концентрация активных компонентов вблизи первоначального водонефтяного контакта приводит к образованию более низких поверхностных натяжений между нефтью и водой, чем в точках, более отдаленных от водонефтяного раздела. Возможно также, что вода вблизи области залегания нефти может иметь-растворенные органические компоненты, такие, как нафтеновые-кислоты или их соли, которые в условиях неоднородного коллектора могут изменить поверхностное натяжение между нефтью-и водой в ту или иную сторону. Кроме того, на характеристику смачиваемости коллекторов заметное влияние оказывает их неоднородность по минералогическому составу, степень шероховатости , чистоты отдельных минеральных зерен, их окатанность, структура кристаллической решетки. Одни минеральные частицы обладают лучшей смачиваемостью, другие— худшей в зависимости от их химического состава и строения кристаллической решетки. [c.207]

    В тории Гориути — Поляни не учитывались строение металла и структура растворителя. Игнорирование роли полярного растворителя в свою очередь затрудняло теоретическую интерпретацию эле-ментатного акта разряда для электрохимических реакций, не сопровождающихся разрывом или образованием химических связей, например Ре ( N) -e Fe ( N)< . Поэтому в теории реорганизации растворителя определяющая роль в элементарном акте разряда отводится распределению диполей растворителя вблизи реагирующих частиц. Именно перераспределение диполей воды по этой теории позволяет осуществиться стадии разряда — ионизации. Теория реорганизации растворителя основана на некоторых определенных моделях металла и растворителя. Поэтому, чтобы познакомиться с основами этой теории, необходимо предпослать ей краткое описание принятых моделей двух соприкасающихся фаз электрода и полярного растворителя. [c.279]

    Теоретического аппарата расчета а нет. Качественно же можно сказать, что для твердой поверхности а зависит от степени очистки поверхности, степени измельчения для порошков, от химической природы вещества поверхности и газовых частиц и от температуры. В опыте наблюдаются величины а = 10 н- Ю . В случае поверхности жидкости при взаимодействии одного и того же вещества, находящегося в разных фазах, а 1. При больших химических различиях взаимодействующих веществ а может уменьшаться до 10""-10" . Например, для О3 в случае воды а = 5 10 а для Н2504 а < 10" . При взаимодействии полярных газовых частиц с полярной жидкостью а обычно тем больше, чем больше дипольный момент газовых частиц. При отсутствии опытных данных обычно используют величину а = 10 -. [c.117]

    В течение 70-х годов проводились исследования химической природы частиц, присутствующих в растворах щелочных металлов в жидком аммиаке, аминах и эфирах. В аммиаке, который является хорошим растворителем, катион М , легко стабилизируется благодаря взаимодействию с полярными молекулами аммиака, а в качестве химической частицы с отрицательным зарядом в растворе остается только В спектрах поглощения разбавленных растворов щелочных металлов в амине или эфире кроме максимума поглощения е д д наблюдается характеристическое поглощение щелочного металла (за исключением ), как представлено на рис. 3.48. Маталон и сотр. [265] в 1969 г. указали, что характеристическое поглощение обусловлено анионами М . С тех пор благодаря применению ЭПР-спектроскопии, кондуктометрии, эффекта Фарадея, флеш-фотолиза и т.д. исследования по составу и кинетике химических частиц в растворах шелочных металлов достигли значительного успеха. [c.182]

    Это заключение согласуется с тем фактом, что для солевого и саженаполненного перекисного вулканизатов СКН-26 величины одного порядка, а значения структурно-чувствительного коэффициента Ь равны. Эти вулканизаты сходны Б том отношении, что на поверхности раздела с частицами дисперсной фазы (частицами вулканизующего агента или наполнителя) происходит ориентация каучука. Вследствие этого наблюдается значительная ориентация цепей при растяжении. Вместе с тем, если при растяжении саженаполненного вулканизата решающим для ориентации цепей является диссипация напряжений при локальном разрушении адсорбционных связей каучук — технический углерод, то в гетерогенной солевой сетке адсорбция неполярного каучука на полярной поверхности частицы полисоли вряд ли значительна (во всяком случае заметно меньше, чем на поверхности малополярных частиц технического углерода). Поэтому главной причиной сохранения ориентационного слоя являются химические меж-фазные связи. [c.107]

    Так называемая энергия активации ассоциативно-диссоциативной реакции согласно ТЭВ, является энергией, необходимой для разрыва ослабленной старой связи. Скорость реакции определяется частотой распада промежуточного соединения с образованием конечных продуктов. Время жизни НРС зависит от соотношения прочности новой и старой связи. Прочность новой связи опреде,1яется химической активностью частиц ло отношению друг к другу. Под химической активностью в ТЭВ понимается, с одной стороны, разность зарядов или полярность, обеспечивающая притяжение между частицами, с другой стороны, способность химических частиц при ассоциации ослаблять друг в друге старые связи. Поэтому наибольшую активность по отношению к ионным молекулам будут проявлять иопы, полярные молекулы, по отношению к ковалентным молекулам активными будут радикалы, что и наблюдается в эксперименте. [c.137]

    Тонкодисперсные нерастворенные загрязнения отстаивают с предварительной коагуляцией при помощи химических реагентов (коагулянтов, флоку-лянтов), образующих а воде хлопья. Последние захватывают при осаждении или сорбируют нерастворенные тонкодисперсные загрязнения и выделяются вместе с ними в осадок. Введение в сточную воду коагулянтов требует последующего доведения pH до величины, обеспечивающей полноту гидролиза соли и выпадения гидроокиси. Для алюминиевого коагулянта и сульфата трехвалентного железа pH = 6-т-7, для сульфата двухвалентного железа pH = = 8,6-3-9. Хлопья гидроокисей обладают развитой поверхностью и при осаждении захватывают взвешенные вещества воды. Скорость осаждения агрегатов клвпьев значительно выше скорости осаждения отдельных частиц и растет с глубиной осаждения. При использовании коагулянтов скорость осаждения высокодисперсных взвесей достигает 0,35—0,70 мм/с. Интенсификация осаждения взвесей, особенно при концентрации их в несколько десятков граммов в кубическом метре, в большинстве случаев достигается введением в воду фло-кулянтов—водорастворимых полимеров с полярными группами. В СССР наибольшее распространение получил как флокулянт полиакриламид. Действие флокулянтов основано на том, что концы их цепеобразных полимерных макромолекул захватываются взвешенными частицами, при этом образуются рыхлые крупные сетчатые трехмерные агрегаты, осаждающиеся со значительно большей скоростью, чем отдельные частицы взвеси. Применение флокулянтов в дозе 1—5 мг/л одновременно с коагулянтами повышает скорость осаждения взвеси на 20—30%. [c.336]

    В противоположность Дэви Берцелиус, разработавший в 1812—1820 гг. электрохимическую теорию строения соединений, придерживался следующего мнения ...тела электрополяр-ны — они либо электроположительны, либо электроотрицательны, т. е. в них преобладает один или другой полюс. Атом может быть либо положительным, либо отрицательно заряженным телом в зависимости от другого, с ним связанного атома [28, стр. 75]. При взаимодействии атомов происходит нейтрализация разноименных зарядов, сопровождающаяся выделением тепла или света. Степень химического сродства атома, зависящая от условий реакции, определяется, по мнению Берцелиуса, электрической полярностью взаимодействующей частицы. Распространив эти основные представления о строении соединений на объекты органической химии, Берцелиус пытался в некоторых случаях определить влияние строения реагентов и условий реакции на особенности ее протекания [29, стр. 80—83, 86—88 30, стр. 17, 940—948]. Так, например, Берцелиус показал, что при разложении щавелевой кислоты иодом между +18 и + 22° С (уже через 3 или 4 часа) количество иода падает и через 5—6 дней щавелевая кислота близка к разложению. При +10°С через 24 часа не происходит заметного действия окислителя на щавелевую кислоту, но при +60° С щавелевая кислота разлагается в несколько минут [29, стр. 81]. [c.9]

    Константы скорости некоторых реакций сольватированного электрона в полярных средах (для них можно считать, что ква-зисвободные электроны практически отсутствуют, так как низка подвижность избыточного электрона — см. табл. 2.9) приведены в табл. 2.10. Можно отметить, что сольватированный электрон ведет себя почти как нормальная химическая частица — его константа скорости уменьшается при повышении вязкости, хотя и не так сильно, как следовало бы ожидать. [c.74]

    В зависимости от химической природы гетероорганических соединений и самого топлива указанные частицы могут состоять из различного числа молекул. Следует отметить, что в первоначальном объединенш участвуют молекулы, уже подвергшиеся окислительной атаке кислорода. Полярность и дипольпый момент таких окисленных молекул особенно велики. Эти частицы обычно имеют определенный электрический потенциал. [c.75]

    Снижение расхода хлорида натрия на коагуляцию достигается применением смеси эмульгаторов — алкилсульфоната и канифольного мыла или мыла жирных кислот. При этом количество канифольного мыла, обеспечивающего оптимальные условия коагуляции, зависит от полярности полимера и в смеси с алкилсуль-фонатом изменяется от 80—85% для СКН-18 до 30—35% для СКН-40. Расход соли существенно сокращается также при осуществлении рецикла серума, при введении в латекс веществ, способствующих агрет-ации латексных частиц за счет десорбции или химического связывания эмульгатора (например, столярного клея) [14], при проведении коагуляции в оптимальном диапазоне (для данной смеси эмульгаторов) кислотности среды (pH). [c.360]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    При растворении какого-либо вещества механизм образования ионов и вид полученной частицы в значительной мере зависят от специфической химической координирующей способности растворителя. В ДПЭ-растворителе полярная ковалент-64 Л— [c.450]

    Обычно разность в гидрофобности поверхности частиц ценного минерала и пустой породы сравнительно невелика. Поэтому для повышения эффективности флотации почти всегда применяют так называемые коллекторы, или собиратели. В качестве коллекторов используют органические вещества с дифильной молекулой, способные адсорбироваться на поверхности частиц ценного минерала таким образом, что полярная часть молекулы обращается к адсорбенту, а углеводородный радикал — наружу. В результате этого гидрофобность частиц минерала возрастает и флотационный процесс протекает интенсивнее. Наиболее часто в качестве коллекторов применяют ксантогенаты RO—С< (где R — углеводородный радикал, М — щелочной металл). Имеются данные, что ксантогенаты не просто адсорбируются поверхностью частиц сернистых металлов, но вступают с ними в химическое взаимодействие. [c.166]

    Причина застудневания состоит в возникновении связей между молекулами высокомолекулярного вещества, которые в растворе представляли собою кинетические отдельности. Между молекулами полимера в растворе могут образовываться кратковременные связи, приводящие к возникновению ассоциатов. Однако если средний период существования связей между макромолекулами становится, очень большим (практически бесконечным), то ассоциаты не будут распадаться и возникшие образования проявляют в некоторой степени свойства твердой фазы. Постоянные связи между молекулами в растворах высокомолекулярных веществ могут образовываться в результате взаимодействия полярных групп макромолекул или ионизированных ионогенных групп, несущих электрический заряд различного знака, и, наконец, между макромолекулами могут возникать химические связи (например, при вулканизации каучука в растворе). Таким образом, застудневание есть не что иное, как процесс появления и постепенного упрочнения в застудневающей системе пространственной сетки. При этом для застудневания растворов высокомолекулярных веществ характерно, что связи образуются не по концам кинетических отдельностей, как это происходит при переходе в гель лиозолей с удлиненными жесткими частицами, а могут возникать между любыми участками гибких макромолекул, лишь бы на них имелись группы, которые могут взаимодействовать друг с другом. [c.482]

    Идеальные растворы. При смешении жидкостей, молекулы которых не полярны и сходны между собой по структуре и по природе химической связи, тепловые и объемные изменения очень малы. Например, при сливании толуола с бензолом и АЯ О и АУ 0. Если смешение двух жидкостей сопровождается лишь хаотичес1<им распределением частиц без изменения межчастичного взаимодействия, то теплота смешения равна нулю, а энтропия меняется лишь в результате изменения концентрации. [c.145]

    Достаточно указать, что она определяет равновесие и скорость растворения твердых и жидких веществ, разнообразных химических превращений в растворах и.т. д. Сольватация приводит, с одной стороны, к изменению природы реагирующих частиц (образованию сольватокомплексов, перераспределению ионного заряда, поляризации, блокированию реакционных центров и т. п.), с другой — структуры растворителя и его свойств. Своеобразно проявление сольватации в явлениях химической кинетики. Здесь сольватация исходных веществ, переходного комплекса и продуктов реакции определяет не только скорости и другие кинетические параметры рва кций, но также и их механизмы. Следует отметить, что учет и детальный анализ сольватационного взаимодействия растворителя с переходным комплексом необходим для построения теории реакционной способности молекул и ионов. Так, например, издавна считается, что полярный растворитель благоприятствует протеканию химических реакций, переходный комплекс которых более полярен, чем исходное состояние реагентов. [c.237]

    Образование структур в коллоидных системах и в растворах высокомолекулярных соединений является результатом сцепления частиц под влиянием действующих между ними сил (молекулярных или химических). Процесс образования структуры и свойства структурированных систем зависят от состояния и свойств поверхности частиц дисперсной фазы. Важную роль при этом играет неоднородность поверхности частиц, которая в одних случаях обусловлена анизоднаметрической формой, в других случаях — химическим строением, т. е. наличием в составе частиц функциональных групп с различными свойствами (например, полярных и неполярных групп). [c.366]

    Менделеев, посвятивший исследованиям растворов более сорока лет, первым указал, что в реальном растворе могут существовать не только частицы растворенного вещества и растворителя (примерами таких растворов являются растворы Нг, Ог, N2 в воде, парафинов в жидких углеводородах), но часто может происходить химическое или физическое взаимодействие частиц растворяемого вещества с растворителем. Это легло в основу разработанной им гидратной теории растворов. Так, положительные и отрицательные ионы, имеющиеся п кристаллической решетке солей, могут по законам элек-ггрического взаимодействия притягивать или отталкивать полярные молекулы растворителя. Например, положительно заряженные ионы Na+ могут быть окружены одним или несколькими слоями полярных молекул воды (гидратация ионов), отрицательно заряженные ионы С1" также могут взаимодействовать с молекулами [c.149]

    Процесс растворения. Растворение — одно из наиболее ярких проявлений взаимодействия между частицами (молекулами, ионами) различной химической природы. Рассмотрим это на примере растворения какого-нибудь ионного соединения (например, Na l) в воде, как типичной полярной жидкости. Между ионами Na и СГ имеется ионная связь, между молекулами воды действуют силы Ван-дер-Ваальса и водородная связь, а между ионами натрия и хлора, с одной стороны, и полярными молекулами воды, с другой, возникает ионо-дипольная связь. Все эти виды связи как бы конкурируют между собой. [c.160]


Смотреть страницы где упоминается термин Полярность химических частиц: [c.143]    [c.111]    [c.218]    [c.307]    [c.71]    [c.75]    [c.95]    [c.368]    [c.165]    [c.168]    [c.306]    [c.243]    [c.345]   
Справочник по общей и неорганической химии (1997) -- [ c.42 , c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая полярная



© 2025 chem21.info Реклама на сайте