Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбент выбор геометрической структуры

    Выбор геометрической структуры адсорбента — удельной поверхности и среднего диаметра пор — зависит от характера разделяемой смеси. Адсорбция молекул газов и легких углеводородов при обычных условиях невелика, поэтому в колонке необходимо применить адсорбент с достаточно развитой поверхностью. Вместе с тем для газов (включая и легкие углеводороды) обычные и немного повышенные температуры достаточно велики для того, чтобы неоднородность поверхности аморфных адсорбентов с высокой удельной поверхностью и массообмен в тонких порах не приводили к существенному размыванию полос. Для подобных разделений применяют цеолиты, тонкопористые силикагели, тонкопористые стекла, а также капиллярные стеклянные колонки с пористым слоем на внутренних стенках. [c.88]


    Выбор геометрической структуры адсорбента [c.265]

    Сущность и особенности физико-химических процессов распределений в газо-адсорбционной хроматографии. Непористые и пористые адсорбентьь применяемые в газовой хроматографии. Роль геометрической структуры адсорбента. Молекулярные сита. Неспецифические и специфические адсорбенты разных типов, роль химической природы поверхности адсорбента. Пористые полимеры. Вредное влияние неоднородности поверхности твердого тела и способы его ослабления. Способы улучщения разделения и достижения большей симметрии пика. Непористые адсорбенты. Пористые и макропористые адсорбенты, соотношение между удельной поверхностью и размерами пор. Химическое и адсорбционное модифицирование поверхности адсорбентов. Выбор оптимальной геометрической структуры и химии поверхности для разделения конкретных смесей. [c.297]

    При разработке теории газо-адсорбционной хроматографии и при ее практическом применении до сих пор встречались большие трудности [35], чем в газо-жидкостной хроматографии, во-первых, из-за отсутствия надежных данных о связи адсорбционной способности и химической и геометрической структур поверхности адсорбентов, что затрудняет выбор адсорбента, и, во-вторых, из-за отсутствия адсорбентов с химически и геометрически однородной структурой, вполне воспроизводимых от партии к партии и достаточно разнообразных по химической природе поверхности. Однако эти недостатки в настоящее время уже не кажутся принципиально непреодолимыми [36], в то время как отмеченные выше недостатки газо-жидкостного метода являются действительно принципиально непреодолимыми. В связи с этим в ряде работ Киселевым было обращено внимание на возможность и необходимость усовершенствования газо-адсорбционного метода путем улучшения качества адсорбентов [37—41]. [c.10]

    При данном химическом составе поверхности адсорбента оптимальный выбор его геометрической структуры (величины удельной поверхности, среднего размера, формы и объема пор, распределения объема пор по их размерам) зависит от характера разделяемой смеси [1—4]. [c.104]

    Экспериментальные данные, полученные при работе с достаточно я адсорбентами с хорошо известным химическим составом и геометрической структурой поверхности, т. е. воспроизводимые с достаточной точностью, служат основой для развития количественной молекулярно-статистической теории адсорбции и адсорбционной хроматографии сложных молекул. В свою очередь эта теория с помощью современной вычислительной техники должна помочь оптимальному выбору адсорбентов для конкретных практических задач молекулярной хроматографии, а также расчетам адсорбционных равновесий и удерживаемых объемов на основе свойств поверхности и адсорбируемой молекулы. [c.6]


    Для относительно однороднопористых адсорбентов величины г, определенные из кривой распределения объема пор по размерам и рассчитанные независимым методом по формуле (6.12), близки и обладают высокой степенью достоверности. В случае неоднородной структуры ошибка при расчете среднего радиуса с помощью соотношения 2 /5, как показал Эверет [42], не превышает 10%- При этом следует заметить, что соотношение между объемом пор и величиной поверхности относительно и зависит от точности У и 5, оценка которых допускает некоторый элемент произвольности, связанный как с выбором на изотерме точки, соответствующей полному заполнению пор, так и с определением емкости монослоя. Кроме того, найденное геометрически отношение 2У/5 не дает возможности охарактеризовать специфику пористой структуры и точно определить геометрию пор. Тем не менее, если допустить, что полученная таким образом величина — средний эффективный радиус пор, то модель пор окажется не слишком плохой по сравнению с решением этой задачи по данным определения скоростей химических реакций в пористых катализаторах. [c.187]

    Выбор грубой геометрической структуры адсорбента — величины удельной поверхности и пористости при заданном химическом составе поверхности зависит от характера разделяемой смеси. Время жизни молекул газов и легких углеводородов в адсорбированном состоянии при обычных температурах невелико, поэтому в колонке необходимо применить адсорбент с достаточно развитой поверхностью. Вместе с тем для газов (включая и легкие углеводороды) обычные и немного повышенные температуры достаточно велики для того, чтобы неоднородность поверхности аморфных адсорбентов с высокой удельной поверхностью и обмен в тонких порах не приводили к существенному размыванию пиков на хроматограммах. Для подобных разделений применяются цео-литы , тонкопористые силикагели, тонкопористые стекла, а также капиллярные стеклянные колонки с пористым слоем на стенках, получаемым разъеданием поверхности стекла растворами или осаждением на них силикагеля из силиказоля. Так, например, изотопы и изомеры водорода были успешно разделены на цеолитах в заполненной капиллярной колонке [1] и на стеклянной капиллярной колонке с пористым слоем на стенках [2]. [c.67]

    Комплексообразование. Роль межмолекулярных взаимодействий при адсорбции и растворении, природы адсорбента и неподвижной жидкой фазы, атакжераль природы и давления газа-носителя в разделении конкретных смесей. Выбор неподвижной фазы (адсорбента, растворителя) для разделения молекул различной-геометрической и электронной структуры и их смесей. Критерии разделения. [c.296]


Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.265 , c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбенты структура



© 2024 chem21.info Реклама на сайте