Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбенты макропористые

Рис. 18.9. Зависимость активности иммобилизованной уреазы (в единицах активности на 1 г сухого адсорбента-носителя) от количества белка, иммобилизованного на макропористом силохроме (<г= 180 нм, 5 = = 41 м /г), поверхность которого была модифицирована сначала реакцией с у-аминопропилтриэтоксисила-ном, а затем реакцией с глутаровым альдегидом Рис. 18.9. <a href="/info/72754">Зависимость активности</a> иммобилизованной уреазы (в <a href="/info/140059">единицах активности</a> на 1 г сухого <a href="/info/1561528">адсорбента-носителя</a>) от <a href="/info/1549434">количества белка</a>, иммобилизованного на макропористом силохроме (<г= 180 нм, 5 = = 41 м /г), поверхность которого <a href="/info/1330306">была</a> модифицирована сначала реакцией с у-аминопропилтриэтоксисила-ном, а затем реакцией с глутаровым альдегидом

    В настоящее время применяются разнообразные неорганические адсорбенты как немодифицированные, так и с химически или адсорбционно модифицированной органическими веществами по-верхностью, а также чисто органические адсорбенты — пористые полимеры. Геометрическую структуру адсорбентов можно изменять в очень широких пределах —от непористых адсорбентов с удельной поверхностью s порядка 1—10 и макропористых с s порядка 10—100 м /г и размерами пор d>100 нм, до микропористых с S 1000 м /г и d< 10 нм. [c.14]

    Газовая адсорбционная хроматография отличается большей термической стабильностью неподвижных фаз — адсорбентов и может успешно применяться как при высоких температурах для анализа высококипящих соединений, так и при низких — для анализа природных и нефтяных газов. Для анализа слабо адсорбирующихся молекул газон и легкокипящих углеводородов используют адсорбенты с большой удельной поверхностью— цеолиты, тонкопористые силика ели. ГТо мере увеличения объема анализируемых молекул необходимо применять все более макропористые адсорбенты с менее развитой поверхностью. Выпуск однородных адсорбентов, в частности цеолитов и пористых полимеров, так называемых пор ап а ков, на основе сополимеров стирола, этилстирола и дивинилбензола позволил уменьшить несимметричность пико и расширить область применения ГАХ. [c.89]

    Процесс адсорбционной очистки движущимся адсорбентом позволяет проводить глубокое обессмоливание гудронов. Для глубокой деметаллизации и деасфальтизации рекомендуется нефтяное сырье пропускать через стационарный слой адсорбента при 200— 500°С и давлении 30 МПа [231], при 300—800 °С и 0,2-3 МПа [232]. В последнем случае применен макропористый сорбент с нанесенными на его поверхность металлами- В качестве адсорбентов применяются гранулированная сажа [233], гранулированный шлам от производства алюминия [234], активные угли [235]. [c.99]

    Макропористые тела имеют поры с радиусом больше 100,0— 200,0 нм. Удельная поверхность макропористых тел находится в пределах 0,5—2 м /г. Такие поры по сравнению с адсорбированными молекулами выглядят как ровные поверхности, и поэтому для макропористых тел применима обобщенная теория адсорбции Ленгмюра. В адсорбентах и катализаторах макропоры играют роль транспортных каналов, и адсорбцией в них можно пренебречь. [c.131]

    Величину аде определяют ири том же давлении в отдельном эксперименте по адсорбции на непористых (или макропористых) адсорбентах той же природы (необходимо отсутствие капиллярной конденсации) и рассчитывают по формуле [c.138]


    Назначение твердого носителя в ГЖХ — удерживать жидкую фазу на своей поверхности в достаточном количестве в виде однородной пленки. Поэтому он должен обладать и достаточной для этого поверхностью, причем последняя должна быть макропористой, так как микропористость приводит к эффекту адсорбции и связанной с этим нелинейностью изотермы сорбции и асимметрии пиков, увеличению времени удерживания, невоспроизводимости и изменению порядка выхода компонентов на хроматограмме. Поэтому применение активных адсорбентов (гелей, активированных углей) в качест- [c.195]

    Адсорбционные и хроматографические свойства тонких слоев полимера, нанесенных на поверхность макропористых кремнеземов как адсорбентов-носителей с достаточно большой удельной поверх- [c.84]

    ПирО углерод, полученный при пиролизе газообразных углеводородов на нагретых поверхностях, не имеет пор, химически стоек, обладает резко выраженной анизотропией тепловых, электрических и оптических свойств, большой плотностью, твердостью и высокой механической прочностью. В пленках пироуглерода атомы углерода располагаются в гексагональных сетках, подобно их расположению в графите. Рассмотренное в лекции 1 отложение пироуглерода на непористых частицах саж и в зазорах между ними можно использовать и для модифицирования других термостойких макропористых адсорбентов, прежде всего макропористых кремнеземов. На [c.87]

    Выбор оптимальной пористости полимерных адсорбентов для применений в хроматографии. Аминированные макропористые сополимеры СТ с ДВБ могут с успехом применяться для адсорбции газов кислого характера, например СОг и ЗОг. Адсорбция СОз и 80г, помимо химии поверхности (см. ниже 6.3), зависит от пористости полимеров. Это видно из рис. 6.5, на котором приведены результаты фронтальной хроматографии, т. е. выходные кривые СО2, выражающие рост концентрации СО2 за находящимся в ко- [c.119]

    По сравнению с набухающими органическими гелями применение жестких макропористых адсорбентов на основе кремнезема для жидкостной хроматографии макромолекул обладает рядом [c.338]

    Подбором структуры нор и химии поверхности адсорбента, а также оптимальных условий элюирования можно осуществить концентрирование и очистку биополимеров методами адсорбционной и (или) ситовой хроматографии. В последнем случае крайне важно устранить сильную адсорбцию белков и вирусов на внешней поверхности макропористых зерен. [c.343]

    Для очистки сточных вод производства тринитротолуола в США рекомендуется адсорбция растворенных органических веществ битуминозными активными углями или макропористой полимерной смолой ХАД-2 с регенерацией этих адсорбентов теплым толуолом [12, 13]. [c.193]

    ПодготоЕ ленная путем модифицирования реакцией с -амино-пропилтриэтоксисиланом поверхность достаточно крупнопористого силохрома или силикагеля может быть использована для иммобилизации белков и, в частности, ферментов, нужных для проведения -биокаталитических реакций. Для этого, как указывалось в лек-дии 5, надо провести дальнейшее модифицирование поверхности адсорбента-носителя прививкой агента (глутарового альдегида), способного вступить в реакцию с аминогруппами как модификатора, так и балка. Адсорбент-носитель с привитыми теперь уже альдегидными концевыми группами вводится в реакцию с различными белками. Ра ссмотрим иммобилизацию уреазы — важного фермента, находящего также применение в аналитическом определении мочевины и в аппарате искусственная почка . На рис. 18.9 представлена зависимость активности иммобилизованной уреазы от количества иммобилизованного белка. Адсорбентом-носителем является макропористый силохром со средним диаметром пор 180 нм. Этот размер пор значительно превышает размер глобулы уреазы. Вместе с тем удельная поверхность этого силохрома еще достаточно высока (5 = 41 м /г), чтобы обеспечить иммобилизацию значительного количества уреазы. Из рис. 18.9 видно, что при этом удается иммобилизовать до 120 мг белка на 1 г сухого адсорбента-носителя (это составляет около 3 мг/м ). Активность уреазы снижается не более, чем наполовину, даже при большом количестве уреазы в силикагеле, зато иммобилизованный так фермент можно многократно применять в проточных системах, и он не теряет активности при хранении по крайней мере в течение полугода. [c.341]

    В заключение следует сказать несколько слов о современных представлениях, развиваемых академиком Дубининым и его учениками . Согласно этим представлениям, понятие удельной поверхности с ростом дисперсности вырождается и не применимо к высокодисперсным адсорбентам, например углям, где половина атомов С свободно контактирует с адсорбатом. Понятие границы раздела фаз (без которого не имеет смысла 5о) исчезает (см. главу I) в таких системах, и они с большим основанием могут трактоваться как гомогенные. В этом случае адсорбент может рассматриваться как один из компонентов, изменяющих, в процессе адсорбционного взаимодействия, свой химический потенциал На. Термодинамическая трактовка, основанная на этих представлениях, приводит авторов к обобщенному уравнению, которое дает два частных решения. Для случая макропористых систем, где адсорбент является лишь источником силового поля, не изменяясь в процессе адсорбции, Д Иа = О, 5 = о и решение сводится к уравнению адсорбции Гиббса. Для другого случая— микропористой системы, 5о = О, А 1а ф 0. При этих условиях решением оказывается уравнение Гиббса—Дюгема, применимое к гомогенным объемным фазам. Концепция вырождения о хороша согласуется с возможностью гомогенной трактовки дисперсных систем, рассмотренной нами при обсуждении правила фаз. Эти представления требуют дальнейшего развития, поскольку адсорбент не является обычным компонентом, ввиду жесткой локализации его в определенной части системы, однако направление это несомненно весьма перспективно, особенно для понимания сущности дисперсного состояния. [c.168]


    Одна ИЗ важнейших характеристик адсорбентов — пористость. Объемной пористостью w называют отношение суммарного объема пор к общему объему дисперсной системы. Необходимо подчеркнуть, что понятие пористости, широко используемое для характеристики и классификации адсорбентов, имеет различный смысл в зависимости от применения его к отдельным частицам (зернам) адсорбента или же к образованной этими частицами структуре. Так, непористые (сплошные) частицы даже при плотнейшей их упаковке образуют пористую структуру — порошковую мембрану, поры которой являются промежутками между зернами. В зависимости от размера частиц эти структуры могут быть макропористыми или микропористыми. [c.174]

    Сущность и особенности физико-химических процессов распределений в газо-адсорбционной хроматографии. Непористые и пористые адсорбентьь применяемые в газовой хроматографии. Роль геометрической структуры адсорбента. Молекулярные сита. Неспецифические и специфические адсорбенты разных типов, роль химической природы поверхности адсорбента. Пористые полимеры. Вредное влияние неоднородности поверхности твердого тела и способы его ослабления. Способы улучщения разделения и достижения большей симметрии пика. Непористые адсорбенты. Пористые и макропористые адсорбенты, соотношение между удельной поверхностью и размерами пор. Химическое и адсорбционное модифицирование поверхности адсорбентов. Выбор оптимальной геометрической структуры и химии поверхности для разделения конкретных смесей. [c.297]

    Удерживание в Г. х. определяется природой межмол. взаимодействий адсорбат — адсорбент. В случае макропористых или непористых адсорбентов его характеризуют абсолютным объемом удерживания Уб = Уц/А, где Ун — истинный объем удерживания, А = т — общая пов-сть адсорбента с колонке, т — масса адсорбента, 5 — его удельная пов-сть. [c.114]

    В работе [75] на основании газохроматографических данных определены дифференциальные теплоты адсорбции ряда нормальных алканов при малых заполнениях поверхности на различных адсорбентах. В ряду изученных адсорбентов (макропористый силикагель, графитированная термическая сажа и кристаллы цеолитов NaA и NaX) эти теплоты для одного и того же углеводорода увеличиваются в 2 раза (см. рис. 26 на стр. 59). Как отмечалось в гл. И, изменение природы поверхности позволяет в широких пределах регулировать селективность газа-адсорбционных колонок для разделения неспецифически адсорбирующихся компонентов как в изотермическом режиме, так и при программировании температуры колонки. [c.129]

Рис. 1. Хроматограмма разделения смеси и. алканов (число атомов углерода в молекуле указано у пиков) на адсорбенте — макропористом силикагеле с содержанием 19% s l, полученная в режиме линейного программирования температуры скорость повышения температуры 7°1мин колонка размером 200x0,4 СМ-. скорость газа-носителя азота 15 мл/мин Рис. 1. <a href="/info/1687412">Хроматограмма разделения</a> смеси и. алканов (<a href="/info/570725">число атомов</a> углерода в молекуле указано у пиков) на адсорбенте — <a href="/info/763350">макропористом силикагеле</a> с содержанием 19% s l, полученная в режиме <a href="/info/24442">линейного программирования</a> <a href="/info/862503">температуры скорость повышения температуры</a> 7°1мин <a href="/info/140462">колонка размером</a> 200x0,4 СМ-. <a href="/info/39446">скорость газа-носителя</a> азота 15 мл/мин
    Получены в удобном для хроматографического применения виде макропористые кремнеземы и окись алюминия различные непорнстые и нанесенные на носитель соли цеолиты непорнстые, макропористые и микропористые углеродные адсорбенты макропористые органические полимерные материалы с различными функциональными группами. Адсорбционное и химическое модифицирование поверхности расширяет круг адсорбентов для молекулярной газовой и жидкостной хроматографии практически безгранично. [c.7]

    Удерживание газов и паров пористыми телами, их адсорбционная способность зависят как от природы взаимодействующих тел, так и от структуры пористого тела. Если структурный фактор для макропористых адсорбентов имеет малое значение, то уже для переходиопористых тел его роль резко возрастает. Это обусловлено в первую очередь проявлением капиллярных сил. Очевидно, что [c.134]

    При малых давлениях закономерности адсорбции в макропористых и переходнопористых адсорбентах, как и для ровной поверхности, определяются, главным образом, природой [c.143]

    В каждом методе применяются соответствующие мембраны. Различия в прохождении веществ через мембраны могут быть связаны как с равновесными, так и с кинетическими свойствами разделяемой системы. По этим признакам мембраны подразделяют на фильтрационные (полупроницаемые) и диффузионные. Первые из них способны разделять вещества в равновесных условиях, размер их пор соизмерим с размерами проникающих частиц или молекул. Диффузионные мембраны обычно применяют для разделения газов методом газовой диффузии. Размер иор у них должен быть таким, чтобы обеспечить кнудсеновский поток газов через мембраны. Фильтрационные мембраны в свою очередь можно классифицировать на макропористые, переходнопористые и микропористые (подобно адсорбентам). Микропористые Мембраны могут быть нейтральными или нонитовьши. [c.238]

    Непсристые неорганические соли и окислы могут быть применены в качестве адсорбентов. Однако для целей адсорбции их лучше наносить предварительно на макропористые твердые носители, например, на силикагели, алюмогели, диатомиты. Для этого 20—25% соли от массы твердого носителя растворяют в воде и а раствор добавляют твердый носитель. Воду выпаривают, а носитель с солью нагревают до температуры плавления соли. [c.109]

    Развитие хроматографии обеспечило возможность изучения влияния химии поверхности на межмолекулярные взаимодействия адсорбента главным образом с изолированными молекулами самых разнообразных веществ, адсорбирующихся из газовой фазы и жидких растворов в области малых заполнений поверхности, и, вместе с тем, потребовало создания возможно более однородных адсорбентов. В связи с этим теоретическая часть курса ограничена расчетами для однородных адсорбентов и в пособие не включены адсорбенты с сильно неоднородной поверхностью, не имеющие непосредственного применения в хроматографии. В нем не рассматриваются также теории ионообменной и ситовой (гель-фильтра-ционной) хроматографии, по которым имеются специальные руководства. Вместе с тем в пособии даются необходимые сведения о макропористых неионогенных и ионогенных адсорбентах и химических реакциях модифицирования их поверхности, которые облегчают читателю ознакомление с этими важными хроматографическими методами. [c.4]

    Снижение летучести в адсорбированном состоянии и разнообразие химической природы монослоев, нанесенных на неорганический адсорбент-носитель. Модифицироваиие саж и макропористых кремнеземов молекулами плоского строения, смесями молекул с макромолекулами и пленками полимеров. Экранирование активных центров поверхности. Модифицирование жидкими кристаллами. Отложение пироуглерода. Адсорбционные свойства карбокремнеземов. [c.74]

    Для придания поверхности адсорбента электроноакцепторных свойств и использования образования комплексов с переносом заряда было применено модифицирование поверхности ГТС нитросоединениями. Так, например, для анализа сложных смесей алифатических и ароматических углеводородов используется сходный по свойствам с ГТС макропористый (углеродный адсорбент карбопак С с нанесенным на него монослоем плоских молекул модификатора — 2, 4, 5, 7-тетранитрофлуоренона, содержащих электроноакцепторные нитрогруппы  [c.80]

    Способность к специфическим межмолек улярным взаимодействиям придают полимерам ПА атомы кислорода карбоксильных и сложноэфирных групп, имеющие неподеленные электронные пары. В гораздо меньшей степени эти свойства проявляют я-связи ароматических ядер. В ПАН электронная плотность сосредоточена на атомах азота, это придает ПА и ПАН свойства адсорбента третьего типа. Полиарилат хорошо растворяется в органических растворителях, например в бензоле и эфире, а полиакрилонитрил в диметилформа-миде и диметилоульфоксиде. Поэтому эти полимеры можно использовать для модифицирования поверхности макропористых кремнеземов методом адсорбции из растворов. [c.85]

    Максимальная активность в расчете на 1 г адсорбента-носителя наблюдалась на макропористых силикагелях и силохромах со средними диаметрами пор около 70—90 нм и удельной поверхностью около 70 м /г. Дальнейшее повышение удельной поверхности было связано с таким сужением пор, при котором проявлялся ситовый эффект по отношению к уреазе и активность уреазы снижалась. При увеличении же размера пор удельная поверхность снижалась, что также приводило к уменьшению количества иммо- билизованной уреазы. [c.341]

    Для иммобилизации ферментов широко используют макропористые неорганические адсорбенты-носители, в частности, кремнеземные, поверхность которых предварительно обрабатывают обычно 7-аминопропилтриэтоксисиланом (7-АПТЭС). В результате модифицирования этим реагентом поверхность кремнезема становится гидрофильной и приобретает основной характер. Для получения аминированных кремнеземных адсорбентов и носителей по этой реакции модифицирование проводят обычно в растворах — в толуоле или в воде. Реакцию модифицирования кремнезема 7-ами-нопропилтриэтоксисиланом в безводном органическом растворителе (без добавления катализатора, поскольку имеются аминогруппы) можно представить следующей схемой  [c.104]

    Увеличение диаметра пор позволяет фракционировать полимеры с М яо 2-10 . На колоннах, заполненных адсорбентами с разными размерами пор, можно расширить область линейной зависимости lgДf от V от сотен до миллионов. На рис. 18.7 приведена хроматограмма фракционирования одного из технических образцов полистирола на колонне с макропористым силикагелем, из которой видно разделение полистирола на три преимущественно присутствующие фракции в этом полистироле. [c.340]

    Биоспецифическая хроматография применяется для очистки ферментов, так как она позволяв извлекать ферменты из сложных смесей в одну стадию с высокой степенью очистки и с большим выходом. В последнее время в качестве адсорбентов-носителей в биоспецифической хроматографии находят применение как макропористые неорганические адсорбенты (силикагели, силохромы, пористые стекла), так и макропористые органические сшитые сополимеры, например макропористые сополимеры глицидилме-такрилата с этилендиметакрилатом типа сферой (см. лекцию 6) со сферическими зернами разных размеров. Эти адсорбенты-носители обладают разной удельной поверхностью и крупными порами разных размеров. На рис. 18.10 представлен пример биоспецифической хроматографии химотрипсина на сфероне с иммобилизованным химической прививкой белком — ингибитором трипсина (являющегося также ингибитором химотрипсина). Из колонны, заполненной обычным макропористым сфероном без иммобилизованного ингибитора, химотрипсин выходит вместе с остальными белками, а из колонны, заполненной сфероном с привитым ингибитором, сопутствующие белки выходят приблизительно за то же время, а химотрипсин прочно удерживается. Это позволяет отделить [c.342]

    ГАЗОАДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ (ГАХ вид газовой хроматографии, в к-ром неподвижной фазой служит твердое тело (адсорбент). Применяется для анализа и препаративного разделения газовых и жидких смесей, а также летучих твердых тел. Жидкости и твердые в-ва перед вводом в хроматографич. колонку переводят в парообразное состояние. В случае твердых нелетучих или термически нестабильных в-в анализируют газообразные продукты их термич. распада (пиролитич. хроматография) или летучие и термически стабильные производные (реакционная хроматография). Удерживание разделяемых компонентов в колонке определяется природой межмол. взаимодействий адсорбат-адсорбент. В случае макропористых или непористых адсорбентов его характеризуют абс. удерживаемым объемом Kj в см /м  [c.454]

    Адсорбенты. Осн адсорбент-кремнезем (силикагель), гидроксилированный или химически модифицированный, используют также А12О3, углеродные адсорбенты, полимеры, содержащие ионогенные, комплексообразующие группы или гр>ппы, способные к специфич взаимод с биологически активными в-вами Размер частиц силикагеля в аналит колонках 3-10 мкм, в препаративных-20-70 мкм Малый размер частиц увеличивает скорость массообмена и повышает эффективность колонки Совр аналит колонки длиной 10-25 см, заполненные силикагелем с размером частиц 5 мкм, позволяют разделить сложные смеси из 20-30 компонентов При уменьшении размера частиц до 3-5 мкм возрастает эффективность колонки, но и растет ее сопротивление и для достижения скорости потока элюента 0,5-2,0 мл/мин требуется давление (1-3) 10 Па Силикагель выдерживает такой перепад давления, гранулы же полимерных сорбентов более эластичны и деформируются В последнее время разработаны механически прочные густосетчатые полимерные сорбенты макропористой структуры, приближающиеся по своей эффективности к силикагелям Форма частиц сорбента размером 10 мкм и выше не оказывает большого влияния на эффективность колонки, однако предпочитают сферич сорбенты, к-рые дают более проницаемую упаковку Внутр структура частицы силикагеля представляет собой систему сообщающихся каналов Для Ж х используют сорбенты с диаметром пор 6-25 нм и уд пов-стью 600-100 м г [c.153]

    Все адсорбенты в соответствии с преобладающим размером пор можно подразделить на три предельных структурных класса макропористые, переходнопористые и микропористые. [c.31]

    Некоторые макропористые адсорбенты применяются в хроматографии. К переходнопористым адсорбентам принадлежит большое число силикагелей, алюмогелей и алюмосиликатных катализаторов, а также многие виды природных глин, применяемых для удаления относительно крупных молекул из различных жидких сред (например, при очистке масел). Типичными представителями микропористых адсорбентов являются дегидратированные кристаллические алюмосиликаты — цеолиты и некоторые типы активных углей, в частности сарановые угли. [c.31]

    Регенерация адсорбентов экстракцией органическими растворителями. Применение органических растворителей для экстракции адсорбированных веществ позволяет добиться высокой степени регенерации адсорбентов — активных углей и макропористых полимерных смол (полисорбов) однако, стоимость такой регенерации относительно высока, поскольку после экстракции необходимо затратить тепло (а часто и пар) для удаления органического растворителя нз зерен адсорбента после завершения экстракции, а также компенсировать потери растворителя в цикле, величина которых не может быть сведена к нулю. Все эти затраты должны компенсироваться стоимостью рекуперированных продуктов, что и определяет целесообразность применения экстракционной регенерации адсорбентов в каждом конкретном случае очистки промышленных сточных вод химических или химико-фармацевтических производств. [c.190]

    Полученные продукты — формолиты используются самостоятельно, например, в составе шихты для получения адсорбентов, а также в качестве нового источника сырья для последующих химических превращений, например, для получения ионитов. При проведении поликонденсации в присутствии Na l, которая впоследствии удаляется промывкой, ползшей новый макропористый материал, имеющий удельную поверхность 40 м г и механическую прочность — 95-97 %. Кроме этого из формолита можно получать пеноматериал, для чего после окончания реакции к формолиту добавляют алюминиевый порошок. За счет оставшейся в формолите серной кислоты происходит вспенивание с образованием пеноматериала плотностью 0,2-0,5 г/см , который затем отверждается при 100 °С в течение 10 ч. Для получения ионообмен- [c.83]


Библиография для Адсорбенты макропористые: [c.346]   
Смотреть страницы где упоминается термин Адсорбенты макропористые: [c.209]    [c.292]    [c.187]    [c.231]    [c.87]    [c.452]    [c.454]    [c.454]    [c.173]   
Основы адсорбционной техники (1976) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Применение макропористых кремнеземов в качестве адсорбентов-носителей для адсорбционно-абсорбционной хроматографии



© 2024 chem21.info Реклама на сайте