Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеаза, аминокислотный состав групп

    При объединении аминокислот в белковую цепь образуются пептидные связи —ЫН—СО—. На одном конце цепи находится —СОО -группа (С-конец), на другом — группа —Ы Нз (Ы-конец). Молекулярные веса белков варьируют в широких пределах — от нескольких десятков тысяч (рибонуклеазы) до нескольких миллионов (гемоцианины). Характерные молекулярные веса отдельных полипептидных цепей, входящих в состав молекулы белка, порядка 20 000, что соответствует примерно 150—180 аминокислотным остаткам (средний молекулярный вес аминокислотного остатка равен 117). По установившейся терминологии молекулы, содержащие менее 100 аминокислотных остатков, называют не белками, а полипептидами. Таковы некоторые гормоны, например инсулин, адренокортикотропин (см. стр. 74). Полипептидами часто называют также синтетические полиаминокислоты и их производные. [c.68]


    Аминокислотный состав точно установлен сейчас для многих десятков ферментных белков, так как с развитием методов препаративной энзимологии (кристаллизации и иных способов очистки) их можно получать весьма чистыми и в больших количествах. Анализы показали, что ферменты по составу не отличаются от других белков и состоят только из аминокислот, если не включают в себя еще простетической группы. Каких-либо особых компонентов в них нет. Расшифровка же последовательности аминокислот в цепях — задача более сложная и пока разрешена для небольшого числа ферментов рибонуклеазы, цитохрома С, лизо-цима (мурамидазы), трипсина, химотрипсина, папаина и ряда других. В настоящее время заканчивается исследование еще ряда белков. Молекула рибонуклеазы, например, оказалась состоящей из одной полипептидной цепи, содержащей 124 аминокислотных остатка молекула химотрипсиногена, предшественника химотрипсина,— также из одной цепи с 246 остатками трипсиногена— с 229 остатками аминокислот. Тем не менее в молекуле а-химотрипсина найдены три цепи. У большинства изученных [c.72]

    Очевидно, что N-концевые группы всех Т-пептидов отличаются от N oнцeвыx групп С-пептидов, поскольку использованные для расщепления ферменты действуют по разным точкам. Исключение составляют пептиды, полученные из 1S-конца исходной цепи, они должны иметь одинаковое начало. Из рассмотрения приведенных в табл. 7.4 структур видно, что таковыми являются пептиды Т-10 и С-5. При этом пептид Т-10 входит в состав С-5, который в дополнение к Т-10 содержит остаток F (фенилаланин). Следовательно, пептид серии Т, примыкающий с С-конца к Т-10, должен начинаться с фенилаланина. Таковым в приведенной серии является только пептид Т-4, т.е. последовательность трипсиновых фрагментов с N- toнцa молекулы Т-10, Т-4. Этот <двойной> Т-пептид содержит весь пептид С-5 и сверх того фрагмент ER. Следовательно, к С-5 должен примыкать пептид С-7, начинающийся с этих двух аминокислотных остатков. Следующая за аргинином основная часть пептида С-7 является N-концевой частью пептида Т-14, который примыкает в исходной структуре к Т-4. Восстановленная таким путем N-концевая последовательность рибонуклеазы приобретает вид Т-10, Т-4, Т-14. Последний содержит остаток тирозина (Y), т е. точку расщепления химотрипсином. Поэтому третий слева пептид группы С должен начинаться с последовательности NqMNK. Это позволяет записать блок С-пептидов на N-конце в виде G-5, С-7, С-9. Пептид С-9 содержит в своем составе сразу несколько Т-пептидов — [c.274]

    Молекулярные массы ферментов, как и всех остальных белков, лежат в пределах от 12 ООО до 1 ООО ООО, так что их размеры намного превьппают размеры их субстратов или функциональных групп, на которые они действуют (рис. 9-2). Некоторые ферменты состоят только из полипептидных цепей и не содержат никаких других химических групп, кроме тех, которые входят в состав аминокислотных остатков к подобным ферментам относится, например, рибонуклеаза из поджелудочной железы. Однако для [c.228]


    Изучение последовательности аминокислотных остатков в рибонуклеазе практически началось с работ К. Анфинсена и его сотрудников, которые в 1954 г. при помощи метода динитрофенилирования установили, что ее молекула представляет собой одиночную пептидную цепь, на М-конце которой имеется следующая последовательность аминокислотных остатков лиз.глу.-тре.ала. [1]. Немного позже к изучению химической природы рибонуклеазы приступила группа исследователей Рокфеллеровского института в США, во главе которой стояли Мур, Стейн и Хирс. Группа этих ученых провела определение химического состава рибонуклеазы и установила, что составляющая ее полипептидная цепь содержит 124—126 аминокислотных остатков, которые были определены количественно [413]. Следующим этапом изучения химического строения рибонуклеазы явилось окисление ее надмуравьиной кислотой при низкой температуре, что исключало возможность модификации тирозина. При этом происходил разрыв дисульфидных связей с образованием восьми сульфоновых групп и переход четырех остатков метионина в соответствующее сульфоновое производное. После гидролиза трипсином изучали тринадцать наиболее крупных пептидов, содержавших все 124 аминокислотных остатка, входивших в состав рибонуклеазы [255]. Для выяснения порядка соединения этих пептидов друг с другом было проведено параллельное исследование пептидов пептического и химотриптического гидролизатов, что позволило построить неполную формулу окисленной рибонуклеазы, которая была дополнена сведениями о расположении амидных групп глютаминовой и аспарагиновой кислот [39]. [c.136]

    За последнее десятилетие были достигнуты значительные успехи в дальнейшем установлении точного строения различных белков. Хотя гидролиз белков и последующий анализ гидролизата, который широко использовался раньше, давал возможность получать данные об относительном содержании и природе входящих в состав белка аминокислот, он не позволял сделать какие-либо выводы о распределении аминокислот в полипептидной цепи молекулы белка. Методы анализа и разделения аминокислот до сороковых годов были очень длительными и трудоемкими н требовали сравнительно больших количеств исходного продукта. Разработанные в 40-х годах новые методы анализа и разделения аминокислот и определения концевых групп в молекулах белков и не слишком высокомолекулярных полипептидов создали возможность наметить основные направления решения исключительно важной проблемы выяснения специфической последовательности аминокислот в молекулах некоторых сравнительно простых белков. Первым большим достижением в этой области химии была расшифровка Сангера с сотр. [4] последовательности аминокислот в молекуле инсулина. С момента опубликования этой важнейшей работы, достигшей цели, которая в течение длительного времени казалась неосуществимой, была полностью выяснена последовательность аминокислот у нескольких белков. Установление того факта, что молекулы специфического белка являются однородными по молекулярному весу и содержат строго определенную последовательность аминокислотных звеньев, неизменную для всех макромолекул, явилось одним из наиболее важных достижений химии белка. В число белков, для которых была выяснена последовательность аминокислот, входят инсулин [4], цитохром С [5—7 , белок вируса табачной мозаики [8—10], рибонуклеаза [11 — 13], а- и Р-цепи гемоглобина человека [14, 15], миоглобин кита [16—18], кортикотропин [19—21], глюкагон [22] кроме того, была установлена последовательность аминокислот в некоторых полипептидах более низкого молекулярного веса и частично выяснена последовательность аминокислот у нескольких высокомолекулярных белков [23]. [c.329]

    При образовании 1- M-His фермент полностью теряет активность, тогда как при образовании второго аддукта модифицированный фермент сохраняет 15% исходной активности. На основании этих данных было сделано предположение, что в состав активного центра рибонуклеазы входят два остатка гистидина. Это предположение подтверждается экспериментами, в которых показано, что небольшие молекулы, например цитидин-3 -фосфат, связывающиеся в активном центре фермента, ингибируют процесс алкилирова-ния. Кроме того, при алкилировании не получено формы рибонуклеазы, в которой были бы модифицированы оба остатка гистидина. Это, вероятно, объясняется тем, что два остатка гистидина, расположенные далеко друг от друга в аминокислотной последовательности, в нативной структуре фермента пространственно близки. И наконец, вполне вероятно, что один или оба остатка гистидина, модифицированные иодацетатом, и некоторые ионизируемые группы, предполагаемые на основании рассмотренных выше кинетических исследований, идентичны. [c.74]


Белки Том 1 (1956) -- [ c.252 ]




ПОИСК





Смотрите так же термины и статьи:

ЗШи, аминокислотный состав

Рибонуклеаза

Состав групп



© 2025 chem21.info Реклама на сайте