Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование веществ для последующего анализа

    В настоящее время в природных водах нормируется содержание около 900 органических соединений [1]. Среди существующих аналитических методов наиболее перспективны для решения этой задачи методы хроматографии. Однако предельно допустимые концентрации в водах большинства органических загрязнений лежат ниже предела обнаружения их этими методами, поэтому необходимым этапом является концентрирование, обычно сорбционное. Осуществление сорбционного процесса не требует сложного аппаратурного оформления и во многих случаях позволяет достичь необходимые степени концентрирования. Целью сообщения является исследование условий, а также расчет сорбционного концентрирования органических веществ на примере фенола с последующим анализом концентрата методом газовой хроматографии. [c.149]


    МпОг), или если эти формы возникают в процессе самого опыта, то могут быть получены неправильные результаты. Еще более грубые ошибки могут возникать при исследовании поведения элементов, склонных к образованию коллоидов. Если микроколичества циркония-95 добавлять к сильнокислому раствору соли циркония, то для достижения полной идентичности поведения стабильных и радиоактивных изотопов этого элемента требуются многократная обработка смеси комплексообразующими веществами, последующее разрушение комплексов концентрированными минеральными кислотами и т. д. Коллоидообразование может привести к серьезным ошибкам при анализе продуктов деления урана и различного рода индикаторных исследованиях [1БJ. [c.6]

    Экстракционно-фотометрический метод основан на сочета-иии экстракции определяемого вещества с его последующим фотометрическим определением. Этот метод применяют при анализе сложных смесей, когда нужно определить малые количества одних веществ в присутствии больших количеств других, при определении примесей в присутствии основных компонентов, а также в тех случаях, когда непосредственное определение интересующего элемента в смеси связано с большими трудностями. При экстракции малых количеств примесей происходит не только их выделение, но и концентрирование. Поэтому экстракционно-фотометрический метод приобретает особо важное значение в связи с определением малых количеств примесей в веществах высокой степени чистоты, широко применяемых в атомной и полупроводниковой технике. Экстракционнофотометрические методы анализа являются высокочувствительными методами, они быстро развиваются и очень перспективны. [c.201]

    Концентрирование. Важное место в аналитической химии занимают методы концентрирования микрокомпонентов. Иногда применяют так называемое абсолютное концентрирование — перевод микрокомпонентов из большого объема раствора в малый это в ряде случаев позволяет снизить предел обнаружения. Однако гораздо большее значение имеет относительное концентрирование— это отделение определяемых микрокомпонентов от основы, от мешающих макрокомпонентов. Относительное концентрирование называют также обогащением. Этот вид концентрирования используют при анализе чистых веществ, а также металлов и сплавов, в ряде случаев при анализе минерального сырья. Относительное концентрирование можно осуществить двумя способами либо путем выделения нужных для последующего определения микроэлементов, либо путем удаления основных компонентов. [c.85]


    Часто удаление главных компонентов вещества производится методом адсорбции, путем применения адсорбционно-жидкостной хроматографии. Критерием, определяющим возможность успешного применения этого метода, является достаточное различие изотерм адсорбции матричных компонентов и микрокомпонентов пробы. Если микрокомпоненты адсорбируются сильнее, то необходимо иметь какое-либо средство для количественного (или воспроизводимого) вытеснения их из адсорбента в концентрированном виде для последующего анализа. [c.329]

    Наиболее простым вариантом самосогласованного поля является резкий кратковременный нагрев (импульс) при последующем охлаждении. В проявительном анализе увеличение длины слоя ограничено из-за размывания полос сорбата и чувствительности фиксирующего прибора. Это ограничение может быть устранено, если на некоторой длине слоя сорбировать компонент на специальной приставке и затем дать температурный импульс при последующем охлаждении. Такой импульс приведет к концентрированию вещества, что позволит удлинить слой и осуществить циркуляцию на данной длине. [c.258]

    Таким образом, эмиссионный спектральный анализ основан на использовании физического свойства вещества, заключающегося в лучеиспускании вследствие возбуждения. В этом и состоит коренное отличие спектрального анализа от химических методов анализа (гравиметрического и титриметрического), основанных, как известно, на непосредственном измерении массы вещества, но не его свойств. Необходимо отметить, что в первый период своего формирования и применения эмиссионный спектральный анализ характеризовался как физический метод, с чем нельзя не согласиться. В настоящее время при определении примесей в веществах высокой частоты для повышения относительной чувствительности определений используют методы химического концентрирования примесей с последующим анализом концентрата прямым спектральным методом. Такой комбинированный способ анализа позволяет повысить чувствительность определения на один-два порядка. Поэтому спектральный анализ следовало бы отнести к физикохимическим методам, так как химические процессы являются косвенным средством многих современных методов спектр тьного анализа. [c.5]

    Принцип анализа. Определение основано на концентрировании веществ из воздуха на твердый сорбент с последующей термодесорбцией и газохроматографическим анализом на приборе с пламенно-ионизационным детектором. [c.76]

    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]

    Концентрирование веществ для последующего анализа [c.102]

    Обычно растворитель-экстрагент выбирают с учетом его экстракционной эффективности, инертности и температуры кипения. Для экстракции продуктов перегонки с водяным паром многие исследователи предпочитают этиловый эфир в силу его высокой экстракционной способности, хотя пентан или изопентан мо гут обеспечить лучшие результаты при экстракции продуктов ферментации углеводороды обладают меньшей экстракционной эффективностью, но при их использовании в водной фазе остаются низкомолекулярные спирты, которые обычно переходят в эфирный экстракт. Этиловый эфир склонен к образованию пе рекиси, и неосторожное его использование в качестве растворителя-экстрагента может привести к образо ванию посторонних веществ. Как правило, чем ниже температура кипения растворителя-экстрагента, тем меньше потери низкокипящих летучих веществ на окончательной стадии концентрирования. Но даже и при использовании низкокипящего растворителя необходимо следить за объемом удаленного растворителя летучие вещества даже с достаточно высокими температурами кипения вносят свой вклад в давление паров системы, и поэтому в процессе концентрирования следует ожидать потерь летучих пропорционально их концентрации и давлению паров. Иногда концентрирование осуществляют, направляя поток азота в пробирку с концентрируемым экстрактом. По мере испарения растворителя экстракт охлаждается, при этом происходит концентрирование имеющихся в газе примесей, которые затрудняют последующий анализ. В некоторых условиях в пробирке может конденсироваться атмосферная влага. От имеющихся в газе примесей можно избавиться, если предварительно пропустить газ через молекулярное сито (см. ниже). [c.145]


    Таким образом, чтобы выделить различные типы органических соединений из осадка, последний нужно подвергнуть действию разнообразных реагентов. В природных водах органическое вещество находится главным образом в растворенном, а не в измельченном виде. Поэтому при анализе вод решающее значение имеет концентрирование из растворов молекулярно-диспергированного органического вещества. Следует заметить, что процесс последующего выделения индивидуальных групп из экстракта менее сложен, чем кропотливая процедура концентрирования органического вещества для анализа. [c.12]

    Независимо от намеченного плана решения конкретной поставленной задачи, подготовка пробы к анализу является начальным и одним из самых ответственных этапов любой аналитической методики. Как справедливо отмечается в книге [221, ...Весь процесс выделения и концентрирования полон опасностей, и можно без преувеличения сказать, что изменения, произошедшие на этих ранних этапах анализа, никогда нельзя исправить на более поздних его стадиях... Ни новейшее аналитическое оборудование, ни лучшие из разработанных способов ввода пробы, ни самые инертные высокоэффективные колонки или сложнейшее оборудование по обработке данных не могут дать корректную информацию, если проба подготовлена для анализа неправильно . В связи с этим приведем лишь один пример. Если в хроматографическую колонку ввести разбавленный спиртовый раствор смеси органических веществ, существенно различающихся по летучести, то пик растворителя (спирта) перекроет, замаскирует сигналы детектора на многие летучие соединения, подлежащие определению, а нелетучие компоненты пробы, оставаясь длительное время в колонке, могут послужить причиной ложных результатов при о работке последующих хроматограмм. Поэтому при исследовании такого рода объектов необходимо предварительно удалить все нелетучие вещества и основную часть растворителя, причем проделать это так, чтобы относительные концентрации других летучих соединений не изменились. [c.157]

    Был разработан также и метод анализа паро-газовых смесей на содержание легирующего вещества. Сущность метода заключается в пропускании определенного количества паро-газовой смеси через склянку с концентрированной азотной кислотой и последующем анализе полученного раствора спектральным методом. [c.144]

    Л Сожжение пробы с последующим удалением матрицы возгонкой используют для концентрирования примесей при анализе веществ высокой частоты. Так, при химико-спектральном определении Ы0 % хрома, свинца и никеля в мышьяке 15 г пробы окисляют воздухом при 250 °С, отгоняют триоксид мышьяка, а остаток анализируют. [c.174]

    Прогресс современной науки и техники требует разработки и внедрения новейших методов исследования и анализа материалов высокой чистоты. При этом в аналитической практике широко используется концентрирование примесей путем экстракции, ионного об мена и соосаждения. В последнее время в полярографическом анализе все шире применяется концентрирование вещества на электроде с последующей регистрацией кривой электрорастворения и определением концентрации соответствующих ионов в растворе по величине максимального тока электрорастворения. [c.115]

    Рост требований к чистоте выпускаемых промышленностью химических реактивов, применяемых в различных областях науки и техники, а в последние годы для сырьевых материалов оптического стекловарения и волоконно-оптических линий связи, явился стимулом к развитию методов аналитической химии, связанных с определением малых количеств элементов-примесей. Для повышения чувствительности уже освоенных, доступных, но недостаточно чувствительных методов получили широкое развитие методы концентрирования элементов-примесей с последующим анализом концентратов. При анализе жидких веществ — кислот, водного аммиака, органических растворителей и воды — проблема концентрирования не представляется сложной, поскольку она решается упариванием в боксированных устройствах. Более сложной задачей является концентрирование примесей при анализе твердых веществ оксидов, гидроксидов, солей. Практически все распространенные методы концентрирования элементов-примесей применялись только для растворов проб анализируемого продукта. Поэтому основной операцией при анализе неорганических соединений особой чистоты является образование представительного раствора анализируемого препарата. [c.15]

    Первые эпизодические работы по применению ионного обмена в химическом анализе были опубликованы около 70 лет назад. По мере совершенствования ионообменных сорбентов и обш его расширения числа ионообменных исследований выявились три четких направления целесообразного аналитического применения ионообменных процессов концентрирование, удаление мешающих анализу компонентов, разделение смесей близких по свойствам компонентов с последующим определением изолированных индивидуальных веществ обычными, неспецифическими методами [68-79]. [c.14]

    Большое внимание уделяют приготовлению эталонной смеси. Нельзя без проверки применять выпускаемые промышленностью реактивы квалификации чистый для анализа или чистый . Часто для контроля чистоты недостаточно определения одного только показателя преломления. Точный анализ возможен с помощью газовой хроматографии и инфракрасной спектроскопии [195]. Дополнительная очистка эталонного вещества не требуется в том случае, если экспериментально определенные физико-химические константы совпадают с теоретическими значениями и температура кипения вещества, измеренная термометром с ценой деления 1Л0 °С, имеет отклонение, не превышающее 0,1 °С с учетом влияния колебаний атмосферного давления. Большинство веществ нуждается в химической очистке от сопутствующих примесей [210—212] и в последующей четкой ректификации при высоком флегмовом числе. При использовании недостаточно очищенных веществ возможно смещение калибровочной кривой По — содержание % (масс.), а также концентрирование сопутствующих примесей в головке колонны или кубе при испытаниях. Это может привести к искажению результатов измерения разделяющей способности колонн. [c.156]

    Все более широкое распространение получают комбинированные, так называемые химико-спектральные методы, которые включают экстракцию, дистилляцию или соосаждение для предварительного абсолютного и относительного концентрирования определяемых элементов с последующим спектральным анализом концентрата. Химико-спектральные методы позволяют получить относительные пределы обнаружения элементов до 10 —10 % и применяются при анализе особо чистых веществ. [c.12]

    Как следует из определения, концентрирование всегда связано с разделением и перераспределением веществ по различным фазам, поэтому все методы, пригодные для разделения (см. разд. 5.1), используют и для концентрирования. Наиболее распространенные методы перечислены в табл. 5.3. Они, как правило, сочетаются с физико-химическими или физическими методами анализа, но в некоторых случаях определение заканчивают гравиметрическими или титриметрическими методами. При выборе метода концентрирования руководствуются природой объекта и его химическим составом, последующим методом анализа, продолжительностью проведения всех операций, обеспеченностью необходимым оборудованием и т. п. [c.98]

    Эталонные смеси следует приготовлять с большой тщательно стью. Нельзя применять без проверки вещества, выпускаемые промышленностью с этикеткой чистые или для анализа . Определения одного только показателя преломления недостаточно необходимо определять также плотность и пределы выкипания (пробной разгонкой). Если эти показатели совпадают с теорети ческими и кривая разгонки, полученная с помощью термометра с делениями в 1/10°С, обнаруживает отклонение не более 1/10 с учетом влияния колебаний атмосферного давления, то в этом случае дальнейшей очистки эталонного вещества не требуется. Для большинства веществ необходима химическая очистка от посторонних примесей [170—172] с последующей четкой ректификацией при высоком флегмовом числе. Если применять недостаточно очищенные эталонные смеси, то, во-первых, возникает опасность смещения калибровочной кривой n 5— вес.% и, во-вторых, во время испытания может произойти концентрирование примесе в головной части колонки или в кубе, что приведет к искажению результатов испытания эффективности. [c.179]

    Однако успехи этого направления не обеспечивали полностью решения новых аналитических проблем, так как наиболее чувствительные современные методы определения примесей, в частности масс-спектральный и ра-диоактивационный, связаны с использованием дорогостоящей и не всегда доступной аппаратуры. С другой стороны, возможности повышения чувствительности распространенных методов анализа, например спектрального и полярографического, выявлялись относительно медленно, что ограничивало применение этих методов для определения ультрамалых количеств примесей. Последнее обстоятельство предопределило развитие второго направления аналитической химии малых концентраций, целью которого является разработка приемов предварительного концентрирования примесей для повышения относительной чувствительности определения. Концентрирование, заключающееся в большинстве случаев в удалении основной части макрокомпонента и последующем анализе концентрата, сильно увеличило значение эмиссионного спектрального анализа, полярографии н некоторых других методов. Широкое распространение соответствующих приборов и накопленный ранее опыт работы с ними обеспечили выполнение массовых анализов для определения примесей. Так, химико-спектральные методы в настоящее время являются, по-видимому, наиболее распространенными методами определения металлов-примесей в веществах особой чистоты. Это потребовало развития самих методов концентрирования — экстракции, соосаждения, дистилляции и других. [c.10]

    Однако в ряде случаев чувствительность прямого эмиссионного спектрального анализа бывает недостаточной, в частности для контроля производства веществ высокой чистоты. В таких случаях проводят предварительное концентрирование Sb. Наиболее простыми, удобными и быстрыми методами концентрирования примесей Sb являются физические методы, в частности методы отгонки (дистилляции) Sb в вакууме, на воздухе и в токе газа-носителя. Однако такие методы применимы только к материалам, основу которых составляют элементы и их соединения, причем их летучесть значительно ниже летучести Sb. Применение концентрирования методами дистилляции примесей требует тонкого измельчения анализируемого материала, поскольку скорость диффузии отгоняемых примесей в твердой фазе мала. Тонкоизмельченную пробу нагревают током большой силы в графитовом стаканчике, зажатом между графитовыми щеками охлаждаемых водой медных электродов. Пары выделяющихся примесей конденсируются на охлаждаемой графитовой или металлической капсуле, которая затем используется в качестве электрода дуги или искры при последующем спектральном определении Sb и ряда других выделившихся вместе с ней примесей. [c.82]

    Комбинация стационарной хроматермографии с фронтальным методом (теплодинамический метод) используют для выделения первого наиболее слабосорбируемого компонента в чистом виде с целью концентрирования и последующего анализа или же для препаративного пйлучения вещества в чистом виде (10]. [c.82]

    Важной проблемой в анализе является концентрирование веществ перед их качественным и количественным ол-ределением в сильноразбавленных растворах (природные, промышленные воды). Исключительно важно концентрирование радиоактивных элементов, в частности при определении в воде радиоактивных стронция, цезия, кобальта [80]. Через колонку с небольшим количеством ионитной смолы пропускаются большие объемы жидкостей, содержащих низкие концентрации улавливаемых ионов. При последующем отмывании колонки соответствующим реактивом извлекают улавливаемое вещество. Степень концентрирования определяется емкостью ионита, его типом, исходной концентрацией элюирующего раствора. Вытесняя поглощенные колонкой ионы, можно осуществить обогащение раствора в 20—40 и более раз [81 ]. [c.142]

    Определение загрязнений в образцах воздуха Подробные сведения о составе микропримесей атмосферного воздуха, со держащего сотни органических веществ с концентрациями порядка нескольких миллиграммов на тысячу кубометров, необходимы в связи с проблемами экологии и охраны внешней среды, но получение их представляет сложную аналитическую задачу В этом случае ГХ—-МС метод может быть применен лишь при условии предварительного концентрирования проб Связанные с этим процедуры обычно включают экстракцию [331], конденсацию в охлаждаемых ловушках [332] или погло щение адсорбентами [333] Каждый из этих приемов имеет свои недостатки Так в случае экстракции необходимо последующее концентрирование раствора, что обычно осуществляется испарением Этот процесс может привести к потере значительного количества летучих компонентов Концентрирование в охлаждаемых ловушках летучих органических компонентов из воз духа обычно сопровождается концентрированием водяных паров, которые мешают при последующем анализе [c.141]

    Концентрирование микропримесей органических и неорганических веществ, содержащихся в газовых и парогазовых средах для последующего анализа на лабораторном хроматографе [c.254]

    Постоянное увеличение числа нормируемых в водах органических веществ делает задачу их определения актуальной [1]. Около половины нормируемых веществ может быть определено методом газовой хроматографии, но из-за низких значений предельно допустимых концентраций (ПДК) прямое определение возможно лищь для 10% соединений. Основное же количество может быть определено методом газовой хроматографии с предварительным концентрированием. Одним из перспективных методов концентрирования следовых количеств органических соединений является сорбционное концентрирование с последующей термической десорбцией в газовую линию хроматографа. Используя различные сорбенты и применяя ступенчатую десорбцию, можно значительно повысить чувствительность и селективность анализа. [c.144]

    Этот метод является оптимальным при определении низких содержаний токсичных химических соединений в воздухе, воде и почве. Он предполагает двойное концентрирование пробы — при извлечении ее из матрицы (воздух, вода или почва) и концентрировании целевых компонентов в трубках с сорбентом с последующим повторным концентрированием — криофокусирова-нием (десорбция примесей из концентрационной трубки с сорбентом и вымораживание примесей в ловушке при температуре жидкого азота). Такое предварительное концентрирование необходимо при анализе реальных экологических проб, содержащих микроколичества вредных веществ, для определения которых прямым методом (без концентрирования) чувствительности хроматографа или хромато-масс-спектрометра недостаточно. [c.553]

    При использовании для идентификации загрязняющих веществ таких комбинаций, как ТСХ/ГХ, ТСХ/ИК, ТСХ/МС и др., разделенные вещества извлекают из сорбента на пластинке (см. выше). Однако возможен и непрерывный отбор элюата из ТСХ-системы, его испарение и последующий анализ методом газовой хроматографии. Схема такой комбинации представлена на рис. П.45. Элюат, отобранный из центра ТСХ-пластинки (6), испаряется в сборник фракций (8) за счет разряжения, создаваемого водоструйным насосом (12), подключенным к коллектору фракций через моностат. При анализе в этой системе линдана (популярный пестицид) одновременно происходит его концентрирование в 50 раз. Далее собранный линдан поступает из коллектора (8) в колонку газового хроматографа с ЭЗД (см. главу I). Этим методом можно надежно идентифицировать и опре- [c.192]

    Содержание лигнина в древесине и другом растительном сырье определяют преимущественно прямыми способами, основанными на количественном выделении лигнина, после предварительного удаления экстрактивных веществ соответствующей экстракцией, полным гидролизом полисахаридов концентрированными минеральными кислотами с последующим гравиметрическим определением количества лигнинного остатка [30]. Преимущественное применение получил сернокислотный метод. При анализе технических целлюлоз прямые методы используют главным образом в научно-исследовательской практике, а в производственном контроле обычно применяют косвенные методы, основанные на расчете содержания лигнина по расходу окислителя (чаще всего перманганата калия) на окисление остаточного лигнина. К косвенным методам относят также УФ-спектрофотометрический метод (см. 12.7.4). УФ-спектрофотометрию используют и для определения кислоторастворимого лигнина, переходящего в раствор при определении лигнина сернокислот- [c.374]

    При анализе особо чистых веществ чувствительность мо жет быть значительно повышена концентрированием приме сей с последующим анализом концентрата. В этом случае концентрирование успешно осуществляется электрохимическими методами, в частности, электролизом на твердых электродах [1]. В указанном обзоре даны подробные характеристики описанных в литературе немногочисленных спектральных методов с применением электролиза для концентрири вания. [c.156]

    Рассмотрим схему выбора рабочих температур в зоне пиролиза при многоступенчатом нагреве образца. Такой способ нагрева используют при анализе нелетучих образцов, содержащих наряду с высокомолекулярными соединениями летучие добавки (примеси, стабилизаторы, остаточные растворители, пластификаторы, летучие термостабильные компоненты композиций или природных образцов и т.п.). С целью определения летучих составляющих и высокомолекулярных соединений в одном опыте применяют двухступенчатый нагрев на первой ступени десорбируются летучие вещества и на второй-осуществляется пиролиз нелетучей части. При этом в зависимости от характеристик удерживания летучих соединений, выделяющихся из образца, и образуюпщхся при пиролизе продуктов деструкции хроматографическое разделение можно проводить после каждой ступени нагрева образца или после десорбции и последующего пиролиза. В последнем варианте разделения осуществляется колоночное концентрирование веществ, выделившихся на первой ступени при десорбции. Полученная хроматограмма, состоящая из двух частей, одна из которых соответствует летучим примесям и добавкам в образце, а другая продуктам пиролиза, может быть использована как для идентификации летучих составляющих и высокомолекулярных соединений, так и для количественного измерения содержания примесей и добавок и определения состава нелетучих соединений. [c.119]

    Для контроля чистоты веществ можно использовать методы классического химического анализа. Например, иодометрически можно определять медь примерно до 10 г/мл раствора. Вообще же для количественного определения примесей в ос. ч. веществах требуются новейшие методы, отличающиеся высокой чувствительностью и селективностью а) фотометрические (колориметрия, спектрофотометрия, пламенная фотометрия) б) флуоресцентные (фосфоресценция, флуоресценция , катодо- и хемилюминесценция и др.) в) электрометрические (полярография, особенно осциллографическая, по-тенциометрия, кондуктометрия, кулонометрия и др.) г) спектральные, обладающие высокой чувствительностью, но малой точностью д )масс-спектрографические , е) радиохимические (активационный анализ, изотопное разбавление и др.) ж) электрофизические (измерение-проводимости, эффекта Холла и др.) з) концентрирование микропримесей в малых объемах (экстракцией, со-осаждени-гм, хроматографически, ионным обменом, электролизом, зонной плавкой и т. д.) с последующим определением их разными способами. [c.319]

    Для последующего анализа часто требуются только водные растворы. Если определяемое вещество представляет собою кислоту или основание, то из экстракта его реэкстрагируют 2—3 кратным взбалтыванием с возможно меньшими объемами подщелоче-ной или подкисленной воды. Этим достигается также и дополнительное концентрирование при условии, что объем реэкстрактов меньше объема экстракта. [c.136]

    Дальнейшим развитием газохроматографического метода анализа летучих веществ, присутствующих в очень низких концентрациях (от 1 ррм до 1 ppb) в таких сложных средах, как биологические жидкости и выдыхаемый воздух, является работа Голдберга и Сандлера [109]. Авторы применяют прямой ввод разбавленного водного образца объемом до 100 мм , удаление воды в конденсоре при 0° С, последующее улавливание и концентрирование примесей на маленькой охлаждаемой форколонке, заполненной тенаксом, и газохроматографический анализ на капиллярной колонке с пламенно-ионизационным детектором. Метод отличается хорошей воспроизводимостью. Общее время подготовки образца для анализа 4 мин. [c.127]

    Для концентрирования микропримесей при анализе высоко-чистых веществ более целесообразно использовать то, что Самуэльсон называет простым ионным обменом, т. е. случай, когда один или несколько ионов сорбируются ионитом, В то время как остальные остаются в растворе. При этом возможно сорбировать, как элемент матрицы, так и примеси с последующим их элюированием. Хотя первый вариант обычно может быть осуществлен проще (выбрать оптимальные условия сорбции для одного элемента значительно легче, чем для группы разнородных по химической природе примесей), второй предпочтительнее, поскольку в первом случае возрастает количество используемых ионита и элюента, что приводит к увеличению результата холостого опыта и возрастанию трудоемкости процесса. [c.55]

    X. 3. Брайнина с сотрудниками [9] предложили метод определения микроколичеств веществ накоплением их в виде нерастворимых пленок на любом электроде с последующим электрорастворением. Концентрирование вещества на электроде используется в полярографическом анализе для повышения чувствительности определений [10]. В этом методе катодом служила капля ртути, полученная электроосаждением ее на платиновой проволоке из подкисленного азотной кислотой насыщенного раствора азотнокислой закисной ртути. В дальнейшем было предложено в качестве катода применять графитовый электрод [11—13]. [c.204]

    Описанные способы концентрирования паровой фазы не предполагают полного извлечения летучих компонентов. Доля их, остающаяся в водной фазе, учитывается при расчете, но в случае веществ с большими коэффициентами распределения и при анализе микропримесей чувствительность определения может оказаться недостаточной. Современные методы анализа воды на уровне концентраций порядка микрограммов на литр предусматривают поэтому возможно более полное извлечение летучих примесей путем газовой экстракции — так называемый стриппинг— с помощью специальных приспособлений. Стриппинг водных растворов может проводиться как с последующим криогенным или сорбционным концентрированием, так и без дополнительного концентрирования, если условия стриппинга обеспечивают достаточно высокую концентрацию детектируемых компонен-IOB в паровой фазе. Важным фактором, способствующим накоплению летучих веществ в паровой фазе, является повышение температуры раствора, и аппаратура [c.112]

    Кроме непосредственного определения концентрации примесей в самом полимере, техника парофазного анализа с успехом применяется при санитарно-гигиенических исследованиях полимеров. Целью таких исследований является характеристика полимеров как источников загрязнения контактирующих с ними сред, и для такой з арактеристики знания концентраций летучих примесей в полимерных изделиях и материалах недостаточно. Для исследования интенсивности и динамики выделения вредных веществ из полимеров в воздушную среду могут использоваться все разновидности техники парофаз-нрго анализа. Во многих случаях газовыделение столь значительно, что возможен прямой газохроматографи- еский анализ небольших проб воздуха из герметически закупоренных сосудов с полимерами (см., например, работы по исследованию газовыделений бутадиен-сти- .ольных резин [96] и строительных материалов на ос- ове поливинилхлорида [97] или полистирола [98]). Для определения очень малых концентраций приходит-, как и при анализе других объектов, применять предварительное концентрирование [99] с последующей [c.153]


Смотреть страницы где упоминается термин Концентрирование веществ для последующего анализа: [c.169]    [c.64]    [c.380]    [c.278]    [c.117]   
Смотреть главы в:

Зонная плавка органических веществ -> Концентрирование веществ для последующего анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ вещества



© 2025 chem21.info Реклама на сайте