Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы эффективные квантовые числа

    Спектры и потенциалы ионизации (ПИ) атомов щелочных металлов (элементов группы 1А в периодической системе) удается довольно хорошо аппроксимировать в рамках теории Бора, если заменить п эффективным квантовым числом п = п—с1), где с1 — так называемый квантовый дефект. Исходя из значения первого потенциала ионизации, вычислите квантовый дефект для 5-электрона и энергию перехода ( +1)5-<-я5 в атомах и (п = 2 ПИ = 5,363 эВ) и Ка = 3 ПИ = 5,137 эВ). Используйте для постоянной Ридберга значение, соответствующее атому водорода (т. е. предположите, что электроны внутренних оболочек полностью экранируют ядро), (Экспериментальное значение для энергии указанного перехода в атоме Ка составляет 25 730 см . ) [c.26]


    В щелочных металлах мы учитывали возмущение орбиты внешнего электрона тем, что вместо главного квантового числа п вводили эффективное квантовое число п. Таким образом, термы Lil и сходных с ним ионов ВеИ, В III, С IV,. .. должны представляться формулой  [c.49]

    Истинные и эффективные квантовые числа водорода и щелочных металлов [c.54]

    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электронного заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью (0,1 — 0,3)е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 9 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом д.пя ряда типичных неорганических веществ. Знаком отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрица- [c.63]

    Увеличение атомного радиуса, снижение потенциала ионизации и электроотрицательности определяют повышение химической активности щелочноземельных металлов с увеличением Z или главного квантового числа п. Увеличение заряда иона до 4-2 и уменьшение радиуса по сравнению с ионами щелочных металлов увеличивает эффективный потенциал иона и создает возможности для возникновения донорно-акцепторной связи и образования комплексных соединений, а у оксида бериллия появляются амфотерные свойства. [c.296]

    До сих пор мы считали, что все точки орбиты валентного электрона лежат достаточно далеко от атомного остова. Это справедливо только в случае больших п и п , когда орбита имеет не только полуось а значительны-х размеров, но и представляет собою круг или мало вытянутый эллипс. При малых значениях п , даже если п велико, перигелий может подходить весьма близко к атомному остову, что вызывает сильное возмущение всей орбиты например, орбиты из, для которых п =. и при больших п, представляя собой сильно вытянутые эллипсы, продолжают оставаться значительно возмущенными. В ряде орбит с одним и тем же главным квантовым числом, например Зз, Зр, 3(1, орбита 3(1 представляет собою круг, а орбита Зз — наиболее вытянутый эллипс (см. вид орбит на рис. 13). В соответствии с этим орбита Зз наиболее возмущена, а орбита 3(1 — наименее возмущена электронами, входящими в состав атомного остова. Отсюда следует, что в ряде термов 35, ЗР, ЗВ щелочного металла эффективное квантовое число п наименее отличается от значения л = 3 для терма ЗВ и наиболее—для терма 35. [c.47]


    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электрон-мого заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью 0,1 — Д,3 е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 10 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом для ряда типичных неорганических веществ. Знако.м -Ь отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрицательна. Расчеты показывают, что сродство к электрону второго порядка для кислорода равно —732, а для серы составляет —334 кДж/моль. Значит, ионы типа и 5 не существуют, и все оксиды, сульфиды, независимо от активности металлов, не относятся к ионным соединениям. Если двухзарядные анионы в действительности не -существуют, тем более нереальны многозарядные одноатомные отрицательные ионы. [c.84]

    Несмотря на то что для щелочных металлов заряд Ze больше, чем для атома водорода, эффективный заряд ядра не может сильно отличаться, так как влияние общего положительного заряда - -Ze в значительной мере компенсируется отрицательным зарядом остальных (Z—1) электронов. И действительно, на опыте найдено, что для атомов щелочных металлов W меньше, чем для водорода. Кроме того, для водорода величина W зависит только от главного квантового числа п и не зависит от азимутального квантового числа к. В атомах щелочных металлов внеядерные электроны влияют на орбиту оптического электрона по-разному в зависимости от эксцентр1тситета электронной орбиты. Для вытянутых орбит п/к велико) электрон испытывает более сильное влияние внутренних электронов, чем для круговых орбит (n/k = i) поэтому термы для атомов щелочных металлов в отличие от водород оподобных атомов должны зависеть как от п, так и от к. Вот почему в данном случае при описании спектров следует учитывать большее число термов, а сами спектры, казалось бы, должны содержать больше линий. Однако иа опыте установлена иная картина. Гипотетический спектр, составленный из полного числа возможных комбинаций термов, содержит значительно больше линий, чем спектр, наблюдаемый в действительности. Отсюда становится ясным, что не все мыслимые переходы являются физически возможными и что существует закон, управляющий запретом переходов. [c.123]

    Это представление можно углубить, если принять во внимание спектроскопические данные. Спектры (см. стр. 280 и сл.) показывают, что у атомов каждого элемента этой группы 2 электрона связаны особенно непрочно по сравнению с остальными, и именно на -уровне с теми же главными квантовыми числами, что и у соседних щелочных металлов. При отщеплении только одного электрона спектр оставшегося электрона находится в том же соотношении к спектру атома предшествующего щелочного металла совершенно так же, как спектр однократно ионизированного гелия к спектру атом 1 водорода. Однако в соответствии с более высоким главным квантовым числом связь в данном случае оказывается далеко не такой прочной, как у гелия. Таким рбразом, сильно электроположительный характер элементов главной подгруппы II группы объясняется строением их атомов аналогично тому, как это было сделано для щелочных металлов. Однако из строения атома следует, что электроположительный характер элементов главной подгруппы II группы должен быть в среднем несколько слабев, чем у щелочных металлов. Поэтому у последних на внешней оболочке связь оказывается еще более слабой, чем у элементов главной подгруппы II группы. Справедливость этого положения подтверждается сравнением потенциалов ионизации (табл. 46), полученных из спектроскопических данных, с данными табл. 28 (стр. 180). Связь электронов на внешней оболочке у металлов щелочноземельной группы прочнее, чем у щелочных металлов, так как атомы последних имеют более высокий эффективный заряд ядра (ср. стр. 256 и с л.) [c.268]


Смотреть страницы где упоминается термин Щелочные металлы эффективные квантовые числа: [c.48]    [c.102]    [c.53]    [c.352]    [c.65]    [c.50]    [c.222]    [c.50]    [c.49]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовая эффективность

Квантовые числа

Число эффективных



© 2025 chem21.info Реклама на сайте