Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроотрицательность типические

    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электрон-мого заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью 0,1 — Д,3 е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 10 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом для ряда типичных неорганических веществ. Знако.м -Ь отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрицательна. Расчеты показывают, что сродство к электрону второго порядка для кислорода равно —732, а для серы составляет —334 кДж/моль. Значит, ионы типа и 5 не существуют, и все оксиды, сульфиды, независимо от активности металлов, не относятся к ионным соединениям. Если двухзарядные анионы в действительности не -существуют, тем более нереальны многозарядные одноатомные отрицательные ионы. [c.84]


    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электронного заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью (0,1 — 0,3)е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 9 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом д.пя ряда типичных неорганических веществ. Знаком отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрица- [c.63]

    Седьмая группа периодической системы, помимо типических элементов — фтора и хлора, включает элементы подгрупп брома и марганца. Поскольку у типических элементов и представителей подгруппы брома до конфигурации электронных оболочек последующих благородных газов недостает лишь по одному электрону, они функционируют как неметаллы. При этом фтор — наиболее электроотрицательный элемент системы, а хлор и бром ио электроотрицательности близки к азоту. Неметаллический характер иода может быть формально приравнен к сере, так как у этих элементов значения ОЭО совпадают (2,6). [c.349]

    ТРЕТИЙ короткий период также состоит из 8- и р-элементов. В связи с ростом главного квантового числа уменьшается энергия связи внешних электронов с ядром и увеличивается размер внешних атомных орбиталей. Поэтому электроотрицательность элементов третьего периода меньше, чем элементов второго периода. По сравнению со вторым периодом увеличивается размер электронного остова - он включает уже 10 электронов 1з 28 2р (оболочка неона - [Ne]). Образование р -р -связей практически невозможно из-за увеличения остова, поэтому, в частности, все простые вещества от натрия до серы представляют собой не молекулярные вещества, а металлические или атомные кристаллы. При этом внутри каждой группы элементы второго и третьего периодов близки по свойствам, так как их электронные конфигурации аналогичны, они различаются лишь главным квантовым числом. Элементы первых трех периодов Менделеев назвал типическими -в них выражены, как в образцах и в наиболее ясной форме, все виды и свойства, но и со своими особенностями . [c.238]


    Судя по свойствам свободных металлов и соответственных, даже весьма сложных, их соединений, Li, Na, К, Rb и s представляют несомненное химическое сходство одно то, что металлы легко разлагают воду, а их водные окиси RHO и углекислые соли R O растворимы в воде, тогда как водные окиси и углекислые соли всех почти других металлов нерастворимы в воде, убеждает в том, что названные металлы образуют естественную группу щелочных металлов. Галоиды и щелочные металлы составляют самые крайние по характеру элементы. Многие из прочих элементов суть металлы, приближающиеся к щелочным металлам, как по способности давать основания и соли, так и по отсутствию кислотных соединений, но они не столь энергичны, как щелочные металлы, т.-е. образуют основания менее энергические, чем щелочные металлы. Таковы, напр., обычные металлы серебро, железо, медь и др. Другие элементы приближаются по характеру своих соединений к галоидам и, подобно им, соединяются с водородом, но в таких соединениях нет энергического свойства галоидных кислот в отдельном виде они обыкновенно соединяются с металлами, но образуют с ними уже не столь солеобразные соединения, как галоиды, — словом, в них галоидные свойства выражены менее резко, чем в галоидах. К этим относятся, напр., сера, фосфор, мышьяк. Наиболее резкое различие свойств галоидов и щелочных металлов выражается в том, что первые дают кислоты и не образуют оснований, другие, обратно, дают только основания. Первые суть настоящие кислотные але-менты, вторые резкие основные или металлические элементы. Первые считаются теми химиками, которые в том или ином виде следуют за электрохимическим учением, типическими электроотрицательными элементами, вторые — образцом электроположительных. Соединяясь друг с другом, галоиды образуют в химическом отношении непрочные соединения, а щелочные металлы—сплавы, в которых характер металлов не изменился, [c.42]

    Диссертация Н. Н. Бекетова О некоторых новых случаях химического сочетания и общие замечания об этих явлениях (1853) отличается больщой оригинальностью мыслей, научной зрелостью и самостоятельностью в подходе к новейшим проблемам органической химии. Бекетов высоко ценил новые идеи Жерара проницательная логика которого (Жерара.— М. Ф.) дала столь рациональное направление химически.м исследованиям, которое уже привело его последователей к блистательным результатам [224, стр. 11],— писал Бекетов. Однако Бекетов критически подходит к выводам Жерара и не закрывает глаза на их ограниченность. В своей диссертации Бретов в первую очередь указывает на то, что правило, данное Жераром для определения основности сочетанных соединений, не имеет того универсального характера, который ему придавал Жерар. Более того, открытие ангидридов одноосновных органических кислот и метода получения смешанных эфиров указывает на то, что правило Жерара приводит в этих случаях к абсурдным результатам, не соответствующим действительности. Кроме того, Бекетов поднимает в своей диссертации важный принципиальный вопрос о. механизме образования сочетанных соединений, о применении правила остатков Жерара, в частности, в связи с образованием сложных эфиров, а именно за счет каких атомов водорода и кислорода образуется вода при сочетании двух органических соединений . Бекетов, опираясь на теорию типов Жерара, указывавшую, что типические (минеральные) атомы ВОДорода в спирте и кислоте являются наиболее подвижными частями этих соединений, приходит к выводу, ис.ко-дя из различных конкретных при.меров, что атомы водорода при сочетании отщепляются как от спирта, так и от кислоты, в то время как Жерар считал, что оба ато.ма водорода отщепляются от спирта. Бекетов писал 2Н берется из обоих соединений, электроотрицательный же элемент (О или сера) [c.316]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется.. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типических электроотрицательных элементов. С эгой точки зрения оказывается энергетически невыгодным образование молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атом хлора — [c.85]

    II аналогичными по способности атомалш элементов [14]. Работа Энгельгардта показывает, насколько естественно вытекали подобные заключения из известных тогда фактов и типических формул,— заключения, которые привели затем Кекуле к теории атомности. Сделать более определенные выводы Энгельгардту мешало, по-видимому, то обстоятельство, что он придерживался эквивалентных весов С = 6 и О = 8. Далее, исходя из идей Бекетова, высказанных в его замечательной (по характеристике Энгельгардта) диссертации, Эн-гельгардт принимает [15], что сера в органических соединениях может быть в двух состояниях электроотрицательной, как в НзЗ, и электроположительной, как в серной кислоте. Но в работах Энгельгардта и особенно Соколова были и такие положения, которые в рамках теории химического строения повели к неправильным выводам. [c.70]


    Кроме ТОГО, эффективные заряды на типических электроотрицательных атомах (кислород, сера и др.) не превосходят le, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы (см. табл. 1). Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродстю к электрону второго порядка) уже отрицательна. Расчеты показывают, что сродство к электрону второго порядка для кислорода равно —175, а для серы составляет ккал. Значит, ионы типа О н S " не существуют, и все окислы, сульфиды независимо от активности металлов не могут быть чисто ионными соединениями. Если двухзарядные анионы в действительности не существуют, тем более не реальны многозарядные отрицательные ионы. [c.36]

    Вопросы для самопроверки 1. Какова современная формулировка периодического закона Д. И. Менделеева 2. Какая закономерность позволила доказать, что заряд ядра атома элемента равен порядковому номеру элемента в периодической системе элементов 3. Что такое энергия ионизации и энергия сродства к электрону Какое свойство атома они характеризуют 4. Что такое электроотрицательность 5. Как изменяются металлические и неметаллические свойства элементов с увеличением порядкового номера в малых и больших периодах 6. Как изменяются металлические свойства элементов в главных подгруппах в связи с изменением радиуса атома элемента 7. Каков порядок заполнения электронных слоев атомов элементов в малых и больших периодах С атомов каких элементов начинают формироваться 3(1-, 4 -, 4/-, 5й-, 5/- и 6 -подуровни 8, На какие электронные семейства классифицируются элементы в зависимости от характера заполнения электронных оболочек 9. Какие элементы называются типическими Какие элементы называются электронными аналогами (полными и неполными) 10. Какие свойства элементов изменяются периодически и какие непериодически с увеличением заряда ядра атома элемента 11. Как изменяются основные и кислотные свой- [c.14]


Смотреть страницы где упоминается термин Электроотрицательность типические: [c.617]    [c.347]    [c.244]   
Общая и неорганическая химия (2004) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте