Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Положительные и отрицательные электронные состояния

    В основном состоянии отсутствует спин-орбитальное взаимодействие, и состояние подмешивается к А2д только в небольшой степени. Уравнение (13.46) отличается от приведенных ранее в двух отношениях. Спин-орбитальное взаимодействие описывается X (который может быть и положительным, и отрицательным) и характеризует состояние. При наличии более чем одного неспаренного электрона разности энергий также могут быть выражены через разности энергий соответствующих электронных состояний. Расчет в случае комплекса У(Н20)й с использованием Д = 11 800 см и = 56 см дает значение -факто-ра, равное 1,964. которое близко к наблюдаемому значению 1,972 [34]. Для комплекса Сг(Н20) Д = 17400 см Я, = 91 см и предсказываемое значение д ниже экспериментального, равного 1,977 [35]. В случае комплекса расхождение даже больше рассчитанное значение равно [c.236]


    Ионы обозначают теми же символами, что и атомы, указывая справа вверху их заряд, например, положительный трехзарядный ион алюминия обозначают А1 +, отрицательный однозарядный ион хлора — С1 . Для ионов, как и для атомов, существует несколько систем радиусов. На их размеры влияют такие факторы, как количество ближайших ионов в узлах кристаллической решетки (называемое координационным числом) и их электронное состояние (заряд, размер и др.). Поэтому наиболее индивидуальным радиусом иона так же, как и для атома, можно считать его орбитальный радиус. Потеря атомом электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов — к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного иона (аниона) всегда больше радиуса соответствующего электронейтрального атома  [c.82]

    Подгруппа щелочных металлов Ь1, N3, К, НЬ, Сз, Рг. Наружный слой атомов состоит из одного х-электрона. Они образуют однозарядные положительные ионы. Отрицательное валентное состояние для них неизвестно. Максимальная положительная валентность 1. [c.83]

    Радиусы нейтральных атомов Na и С1 равны соответственно 1,86 и 0,99 А. Из сопоставления величин ионных и атомных радиусов видно, как сильно влияет на размеры отдача или присоединение атомов электронов. Для одного и того же элемента это влияние наглядно показано на рис. 111-61, где даны увеличенные в 50 миллионов раз размеры атома серы в нейтральном (S°), отрицательно двухвалентном (S" ) и положительно шестивалентном (S+ ) состояниях. В дальнейшем придется часто иметь дело с размерами атомов и ионов, так как от них сильно зависят многие свойства веществ. [c.110]

    Для того чтобы понять существование различных электронных состояний с различными вращательными и колебательными постоянными, необходимо рассмотреть движение электронов вокруг двух ядер и исследовать их энергий. Сначала рассмотрим один электрон в поле двух неподвижных ядер. Примером может служить ион Исследование уравнения Шредингера для такой системы показывает, что, так же как и для атома водорода, возможны все положительные значения энергии тг только некоторые отрицательные значения. Качественно можно получить дискретные (отрицательные) уровни энергии из уровней так называемого объединенного [c.30]

    В обычном состоянии всякое тело пмеет такое количество отрицательных электронов и положительных зарядов атомных ядер, при котором общий отрицательный заряд всех электронов равен общему положительному заряду всех ядер. Поэтому тело не обнаруживает ни положительного ни отрицательного заряда. [c.127]


    Постоянная взаимодействия А может быть положительной или отрицательной величиной соответственно различают нормальные и обращенные электронные состояния например, у гидроксила основное состояние обращенное (состояние а у метина — нормальное (состояние А П ). [c.48]

    Наиболее вероятно, что выделяющаяся энергия (равная разности работ ионизации молекулы, соответствующей положительному иону, и отрыва электрона от отрицательного иона) переведет молекулу, образованную из положительного иона, в сильно возбужденное состояние, тогда как молекула, полученная из отрицательного иона, будет находиться в нормальном электронном состоянии  [c.349]

    Если электронное состояние 2 " ф = (—1) так что вращательному состоянию отвечает положительная функция при четном J и отрицательная — при нечетном J. [c.349]

    Если электронное состояние 2 ""i = (—1) ф, так что вращательному состоянию отвечает отрицательная функция при четном У и положительная функция при нечетном J. [c.349]

    Частоты ЯКР для атомов различных элементов в зависимости от значений eQ лежат в интервале 10 —10 гц (рис. 2-1). Таунс [1] дает интересную корреляцию QIR (где Я — среднее значение радиуса ядра) от числа четных нуклонов. Собственные квадрупольные моменты ядер меняются довольно систематично, увеличиваясь сверху вниз и справа налево по периодической системе элементов. Исключение составляют С5 и обладающие магическими числами нейтронов, т. е. имеющие замкнутые нуклонные оболочки в ядре. Ядерные квадрупольные моменты для элементов левых подгрупп всегда больше, чем для правых. Однако значения е С1ц для атомов левых подгрупп всегда меньше, чем для правых, из-за различия в электронных состояниях валентных электронов соответствующих элементов. Кроме того, большинство квадрупольных моментов положительно, что вызывается тенденцией ядра к вытянутой относительно оси квантования форме, имеющей более низкую электростатическую энергию, чем в случае сжатой формы ядра с отрицательным значением е 3 . [c.26]

    По этой причине картина изменения электронных состояний свободного иона в поле лигандов имеет вид, представленный на рис. IV. 2. Энергия дестабилизации о при комплексообразовании компенсируется за счет основной энергии связей, в данном случае—притяжения положительного остова центрального иона и отрицательных лигандов. Эту часть энергии в теории кристаллического поля не рассчитывают и поэтому положение центра тяжести [c.71]

    Кристаллическая структура шпинели во многом определяет магнитную структуру. Если в А- и В-положениях находятся магнитные ионы, то, как видно из рассмотрения кристаллической структуры, основным видом взаимодействия между ними будут косвенные отрицательные обменные взаимодействия типа А—X—В. Угол связи равен 125°. Именно этот вид взаимодействий приводит к образованию двух магнитных А- и В-подре-шеток. При этом магнитные моменты ионов, находящихся в А- и В-положениях, направлены противоположно друг другу. Однако, в отличие от ферримагнетиков со структурой граната и перовскита, в шпинелях существенную роль могут играть и прямые В — В-взаимодействия (см. рис. 16), которые могут быть как положительными, так и отрицательными в зависимости от электронного состояния катионов [3]. Кроме того, обменные взаимодействия в В-подрешетке могут осуществляться и косвенным путем по цепи В — X — В под углом 90° [3]. [c.6]

    Первые два перехода дают состояния 2 и Ей, вторые — состояния А . Все состояния нечетные, так как совокупность трех нечетных и одной четной орбитали дает нечетное состояние. На антисимметричной относительно плоскости XZ орбитали может находиться либо один, либо два электрона, соответственно состояние может быть антисимметричным и симметричным относительно этой плоскости, т. е. отрицательным или положительным. Таким образом, состояния соответствующие возбуждению одного электрона могут быть Е+, 27, А , А . [c.57]

    Настоящая глава посвящена электронам проводимости. Каждый электрон в любом теле имеет заряд, равный заряду свободного электрона. Даже дырке, оказывается, можно не приписывать положительный заряд, если учесть, что она представляет собой незанятое электроном состояние с отрицательной эффективной массой (см. (16.3)). [c.310]

    Электронные состояния двухатомных молекул могут различаться также по свойствам симметрии. В основе этого, как уже отмечалось (см. гл. 3), лежит поведение волновых функций молекулы при операциях симметрии. Для операции отражения в плоскости симметрии, проходящей через ось молекулы, состояния могут быть либо положительными ( + ), либо отрицательными (—) в зависимости от того, сохраняет или меняет при этом знак волновая функция Ч . Этот индекс пишется около символа состояния вверху справа. Если двухатомная молекула состоит из двух одинаковых атомов, то она обладает центром симметрии. По отношению к операции отражения в центре симметрии электронные состояния таких молекул подразделяются на четные ( ) и нечетные (ы). Этот индекс пишется внизу справа относительно символа состояния. Так, основное электронное состояние молекулы водорода (НИН) является состоянием т. е. син- [c.66]


    Для циклич. переходного состояния (активир. комплекса) существенно, каким образом замыкаются новые связи в фазе или в противофазе, т. е. имеют ли атомные орбитали реагентов в области макс. перекрывания одинаковые или противоположные знаки (рис. 1 и 3). В первом случае взаимод. наз. связывающим, во втором-разрых-ляющим. В зависимости от числа атомных орбиталей в сопряженной системе активир. комплекса, электронного состояния реагирующей системы и характера вновь возникающих взаимодействий, энергия замыкания цикла м. б. как положительной, так и отрицательной, причем ее знак определяется без вычислений. В частности, при циклизации производных бутадиена (р-ция 2) в основном электронном состоянии переходное состояние стабилизируется замыканием связей посредством разрыхляющих взаимод. (перекрывание в противофазе, рис. 3), делая энергетически выгодным коиротаторный путь термич. р-ции. В первом электронном возбужденном состоянии циклич. переходное состояние стабилизируется связывающим взаимод. (перекрывание в фазе), что соответствует дисротаторному пути. Эти общие положения позволяют предсказывать закономерности Р. с. согласованных электроциклич. р-ций (Р. Вудворд, Р. Хофман, 1965). [c.214]

    Многочисленные опыты показали, что в кристаллах типа Na l структурные частицы, слагающие кристалл, являются ионами. Атом натрия, после отщепления от него валентного электрона, становится положительно заряженным ионом с устойчивой внешней электронной оболочкой, аналогичной электронной оболочке благородного газа (неона). Атом хлора, присоединяя один электрон, заряжается отрицательно и получает аналогичную устойчивую конфигурацию внешних электронов. Состояние равновесия между ионами [c.136]

    Это позволяет одновременно отразить тот факт, что в сопряженных системах порядки я-связей меньше, чем в изолированной я-связи. В молекулах число я-электронов равно числу 5р2-гибридных атомов углерода, тогда как в однозарядных катионах содержится на один я-электрон меньше, а в однозарядных анионах — на один я-электрон больше. Отображение истинного состояния связей в сопряженных системах с помощью классических структурных формул возможно и с использованием представлений о мезомерии (Лепуорт, Робинсон, Ингольд, Арндт, Вейц, 1922 г.). В основном они близки к представлениям о резонансе или делокализации я-электронов. Согласно мезомерным представлениям основное состояние сопряженной системы описывается наложением двух или трех различных состояний, каждое из которых может быть изображено с помощью классических структурных формул. В таких формулах свободные пары электронов обозначают двумя точками, неспаренные электроны — одной точкой, положительный заряд — знаком + , а отрицательный — — . Основное состояние называется мезомерным, а используемые для его описания мысленно налагаемые структуры — мезомерными граничными структурами резонансными структурами). Последние представляют собой граничные (крайние) формы распределения я-электронов. Наложение граничных структур указывается обоюдоострой стрелкой - , например  [c.72]

    Этот третий род взаимодействий является более интересным и неожиданным, и даже приближенное объяснение его не может быть дано без привлечения квантово-механических представлений. Согласно Дираку, электроны могут существовать в состояниях как положительной, так и отрицательной кинетической энергии. Обычно мы не замечаем отрицательных электронов с отрицательной энергией просто потому, что они имеются повсюду. При столкновении достаточно энергичного -фотона с одним из этих электронов фотон может вырвать его из состояния отрицательной энергии и таким образом освободить его. Электрон вылетит как обычный отрицательный электрон с положительной кинетической энергией, оставив положительную дырку в сплошном фоне отрицательного заряда. Эта дырка ведет себя как положительный заряд, т. е. как позитрон. Позитрон и электрон имеют одинаковую массу покоя то, энергетический эквивалент которой равен тос1 Фотон с энергией 2 тоС (1,02 Мэе) или большей может таким образом вызвать рождение электрон-нозитронной пары. Из всей энергии фотона первые 1,02 Мэе используются для создания массы покоя, а остаток переходит в кинетическую энергию электрона и позитрона. Фотон не рассеивается в этом процессе, а полностью поглощается. Вследствие требований сохранения энергии и импульса рождение пар не может происходить в пустом пространстве, ему в большой степени способствует наличие атомных ядер рождение пар может происходить и в присутствии электрона. В первом приближении вероятность рождения пар в поглощающей среде пропорциональна Z , так что для его изучения наиболее удобны элементы с большим атомным номером, например свинец. [c.35]

    Молекула, как и атом, характеризуется мультиплет-ностью электронных состояний. Мультиплетность уровня определяется и обозначается по указанным выше правилам. По отношению к отражению в плоскости симметрии, проходящей через ось молекулы, электронные состояния разделяются на положительные (-1-) и отрицательные (—), что указывается вверху справа у квантового числа Л. Для линейных молекул, обладающих центром симметрии, электронные состояния делятся на четные (g и нечетные (и), что указывается справа внизу у Л. В ряде случаев перед символом терма Л дается дополнительный символ (А, В, С, X,. .., а, Ь, с,. ..), приписываемый каждому конкретному терму и не связанный однозначно со спектроскопическими характеристиками молекулы. [c.649]

    Отрицательно активная молекула. Под влиянием внешних воздействий молекулы способны терять часть своих электронов, превращаясь в положительно заряженные ионы. Если подведенной энергии недостаточно для полной ионизации молекулы, т. е. для выброса электрона за пределы действия внутримолекулярных сил, то молекула окажется в возбужденном состоянии. Возбуждение состоит в том, что при сообщении энергии молек5 ла как целое (ради простоты возьмем двухатомную) начинает быстрее вращаться вокруг оси, соединяющей ядра атомы в молекуле начинают сильнее колебаться один относительно другого при дальнейшем подводе энергии происходит переход электронов с низшего уровня на высший. В каждом устойчивом электронном состоянии молекула может совершать колебания относительно положения равновесия, т. е. может иметь некоторую колебательную энергию Е,. и может также вращаться, т. е. иметь некоторую вращательную энергию Едр. Полная энергия Е молекулы равна с очень хорошим приближением сумме [28] [c.144]

    Особенностью химичесютх реакций является передача электрона от одного атома или молекулы к другим. Процесс передачи электрона вовсе необязательно реализуется переходом свободного электрона. Электрон может быть отщеплен от реагента, если в его непосредственном соседстве находится электронный акцептор. Прирост свободной энергии при акцептировании электрона должен превосходить энергию, необходимую для его отщепления от электронного донора. Освобождение электрона можно также осуществить, сообщая донорной системе избыточную энергию с помощью теплового, фотохимического или электростатического воздействии. Такой процесс происходит независимо от наличия каютх-либо акцепторов электронов. Отщепленный электрон диффундирует в среде до его захвата в результате одного из двух возможных актов. Он может присоединиться к атому или молекуле, которые обладают положительным сродством к электрону. В то же время, если электрон перемещается в конденсированной среде, состоящей из молекул с нулевым или отрицательным электронным сродством, он оканчивает свой путь в ловушке , образованной его собственным поляризационным полем. Такой захваченный электрон уже не в состоянии свободно перемещаться в веществе. Из своей потенциальной ямы электрон может освободиться только при условии, если он приобретет энергию извне или перейдет в соседнюю ловушку. Электрон, захваченный в растворителе, отличается от свободного электрона меньшей подвижностью и большей локализацией. Кроме того, захваченный электрон характеризуется отрицательной свободной энергией образования, т. е. является термодинамически более стабильным. Эти свойства, напоминающие свойства отрицательного сольватированного иона, позволяют рассматривать электрон как особую гидратированную частицу. В общем смысле электронный акцептор также можно рассматривать как ловушку, в которой электрон локализован гораздо сильнее, чем в ловушке, образованной молекулами растворителя. Электрон, окруженный ориентированными молекулами растворителя, является (и это его наиболее существенная в химическом отношении характеристика) необычайно активным электронным донором. Такое образование, существующее в жидкостях, называется солъватированным электроном е , если же растворителем является вода, то это гидратированный электрон вад. [c.169]

    Этот предельный случай впервые был введен Розенблютол и Ростокером (1960) при исследовании соответствующих уравнений для высокотемпературной плазмы. Плазмой называется состояние вещества за пределами атомарной газообразной фазы. Когда атомарный газ нагревается выше некоторого предела, появляется механизм, который непрерывно поглощает кинетическую энергию хаотического движения. Это подобно энергии диссоциации в жидкости с полукристаллической структурой, которая является как бы каналом для непрерывного поглощения энергии при переходе из жидкого состояния в газообразное. При переходе в плазменную фазу поглощающим каналом является механизм ионизации, и в новой фазе частицами будут положительные ионы и отрицательные электроны. Законы, управляющие поведением плазмы, так же сильно отличаются от законов газообразной фазы, как законы газообразной фазы отличаются от законов жидкой фазы. Силы взаимодействия в плазме — кулоновские. Они отличаются от всех других сил взаимодействия между частицами очень большим радиусом действия. Эти две характеристики — дальнодействие и высокая температура — дают возможность предположить, что Фо/й Т о е и г1п 8" , так что ( оГ п 1кТ 1. Для кулоновского закона взаимодействия [c.143]

    Вращательные собственные волновые функции имеют важные свойства симметрии вращательные функции положительны ( г) лц отрицательны (—) в зависимости от того, меняется или не меняется знак функций при отражении всех атомов в начале координат, а для молекул с центром симметрии собственные функции симметричны (s) или антисимметричны (а) в зависимости от того, являются ли они таковыми по отношению к перестановке одинаковых ядер. Соответствующие вращательные уровни обозначают соответственно + или — их или а. Статистические веса симметричных и антисимметричных уровней различны и зависят от спина и статистики эквивалентных ядер. Для линейных молекул точечной группы симметрии Dork, если спины всех ядер равны нулю, за исключением молекул с центром симметрии, антисимметричные уровни отсутствуют, т. е. для электронного состояния отсутствуют все нечетные уровни, а для состояния 2 j — четные. [c.137]

    Многочисленные опыты показали, что в кристаллах типа Na l структурные частицы, слагающие кристалл, являются ионами. Атом натрия, после отщепления от его валентного электрона, становится положительно заряженным ионом с устойчивой внешней электронной оболочкой, аналогичной электронной оболочке благородного газа (неона). Атом хлора, присоединяя один электрон, заряжается отрицательно и получает аналогичную устойчивую конфигурацию внешних электронов. Состояние равновесия между Ионами натрия и хлора наступает в результате ураБновешивания сил притяжения между разноименными ионами и сил отталкивания, возникающих между отрицательно заряженными электронными оболочками обоих ионов. При симметричном окружении каждого иона в кристалле ионами противоположного знака можно с большой степенью точности считать эти ионы несжимаемыми шарами [c.160]

    По этой причине картина изменения электронных состояний свободного иона в поле лигандов имеет вид, представленный на рис. 11.2. Энергия дестабилизации Ео при комплексообразовании компенсируется за счет основной энергии связей, в данном случае— притяжения положительного остова центрального иона и отрицательных лигандов. Эту часть энергии в теории кристаллического поля не рассчитывают и поэтому положение центра тяжести расщепленных уровней (относительно которого отсчитывается расщепление) остается неопределенным. Легко показать, что он совпадает с положением терма центрального иона в поле заряда лигандов, распределенного сферически симметрично. Вполне определены здесь лишь относительные положения уровней T2g и Eg, энергетическое расстояние между которыми А называется параметром расщепления кристаллическим полем. [c.38]

    Передача влияния заместителя по линии а- и л-связей приводит к изменению электронного состояния этих связей происходит их поляризация, которая оказывается различной в зависимости от типа связи. Если влияние заместителя передается при участии 0-связей, то наблюдается постепенное уменьшение изменения электронного состояния связей. Такая поляризация называется индукционной, а заместитель проявляет индуктивный эффект (/-эффект). Если в цеип имеется л -связь или изолированные л-связи, то происходит поляризация их я-облаков (/д-эффект). Если заместитель имеет положительно пли отрицательно заряженные атомы, то вокруг них создается электрическое поле, которое действует на другие атомы не только по линии связей, но и непосредственно через пространство в этом случае сила воздействия заместителя на другие атомы зависит от конфигурации и от конформации молекулы. Такое влияние заместителя называется эффектом поля (/ -эффект). Если в цепи имеется система сопряженных кратных связей или заместитель с неподеленной электронной парой находится при кратной связи или при ароматическом ядре, то передача влияния происходит по системе я-связей, и эффект заместителя называется эффектом сопряжения (С-эффект), [c.51]


Смотреть страницы где упоминается термин Положительные и отрицательные электронные состояния: [c.17]    [c.83]    [c.189]    [c.43]    [c.45]    [c.157]    [c.72]    [c.462]    [c.113]    [c.141]    [c.196]    [c.457]    [c.43]    [c.306]    [c.60]    [c.113]    [c.163]    [c.29]    [c.30]   
Теоретическая химия (1950) -- [ c.20 , c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Состояния электрона

отрицательная



© 2025 chem21.info Реклама на сайте