Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец ацетилен

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Запись данных опыта. Отметить и описать наблюдаемое явление. Написать уравнение соответствующей реакции, учитывая, что в кислой среде марганец из семивалентного состояния пере.ходит в двухвалентное, а ацетилен окисляется до двуокиси углерода и воды. [c.205]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Второй способ применяют для определения натрия, калия, марганца, кальция, магния, железа и алюминия. Во фторопластовом тигле к 0,1 г золы прибавляют 5 мл 65%-ной фтороводородной кислоты и 0,5 мл 65%-ной хлорной кислоты, тигель помещают на песочную баню при 50—60 °С и, повышая температуру до 200—250 °С, выпаривают раствор досуха. Сухой остаток растворяют при нагревании в 2,5 мл концентрированной хлороводородной кислоты и 25 мл воды и разбавляют водой до 100 мл. Эталоны для определения кремния содержат 1% борной, 5% хлороводородной и 1% сЬто-роводородной кислот, а для определения остальных элементов — 2,5% хлороводородной кислоты. Для подавления ионизации при определении кальция к пробам и эталонам добавляют 0,1% калия в виде хлорида. Кремний, алюминий, кальций и магний определяют в пламени ацетилен — оксид диазота железо, марганец, калий и натрий — в ацетилено-воздушном пламени. Использован СФМ Перкин-Элмер , модель 305. Аналитические линии и характеристики метода анализа приведены в табл. 60. [c.225]

    Непереходные элементы — неметаллы (галогены, кислород, азот и т. д.) и металлы (литий, натрий, магний и т. д.) — образуют алкильные (и подобные им) производные со связью углерод — элемент. Переходные элементы (железо, кобальт, никель, марганец, хром, ванадий и т. д.) резко отличаются от непереходных элементов характером связи углерод — металл. К металлоорганическим соединениям этого типа относятся комплексы переходных элементов с непредельными углеводородами (этилен, галогеноаллилы, ацетилен), циклическими углеводородами (циклопентадиен, бензол) — дициклопентадиенильные и бис-ароматические (ареновые) производные — и другие комплексы, например карбонилы переходных металлов Fe( O)5, Ni( 0)4, [Со(СО)4]2 цианиды переходных металлов ферро- и феррицианидные анионы [Ре(СМ)б] ", [Ре(СМ)б] и т.д. Органические соединения этой группы элементов, в частности сендвичевые соединения, будут описаны позднее (с. 527). [c.322]

    Были сделаны попытки применить в качестве катализаторов для конденсации ацетилена и ряд других веществ. Бинни нашел, что карбонил никеля вызывает конверсию ацетилена более чем на 65% в жидкие продукты с большим содержанием олефинов при нагревании его в смеси с азотом и водородом до 190 . Сульфат церия согласно патенту [43] является катализатором конденсации при 80 для газа, содержащего ацетилен и метан. Щелочные и щелочноземельные металлы, повидимому, не вызывают полимеризации ацетилена, а дают ацетилениды в смеси с ббльшим или меньшим количеством углерода. Бар [44] сообщает, что в вылуженной железной трубке образование углеводородов начинается при температуре 475 только после удаления слоя олова. Фишер, Шредер и Эрхардт [45] и Ф3ОКИО [27], наоборот, отмечают увеличение разложения ацетилена при контакте с луженым железом. Тиде и Иениш [46] сообщают,что марганец способствует разложению но что ряд других металлов не оказывает значительного влияния. Лозовой [47] применил при 370—450° в качестве катализатора для полимеризации ацетилена безводный хлористый цинк. [c.228]


Смотреть страницы где упоминается термин Марганец ацетилен: [c.391]    [c.672]    [c.253]    [c.182]    [c.253]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец ацетат как катализатор при при реакции ацетилена

Марганец ацетат как катализатор при реакции ацетилена с паром



© 2025 chem21.info Реклама на сайте