Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация различных частиц в пламенах

    При давлениях горючей смеси порядка атмосферного (или выше атмосферного) вследствие большой абсолютной скорости реакции температура пламени достигает. 2000—3000° К и мы имеем обычные горячие пламена с характерной для них структурой. Структура горячего пламени может быть различной в зависимости от условий горения. Наиболее простой структурой обладают пламена, горящие без доступа внешнего воздуха. Таковы пламена, горящие в трубах, в частности, пламя, получаемое при подаче горючей смеси через узкую короткую трубку в трубу большего диаметра, сообщающуюся с внешним воздухом только в верхней ее части. В этом слзгчае можно различить следующие три зоны пламени зону предварительного подогрева газовой смеси, зону горения (или зону реакции) и зону сгоравших газов. В зоне подогрева происходит постепенное повышение температуры, обусловленное передачей тепла от зоны горения и тепловыделением в результате медленных реакций, развивающихся вследствие повышения температуры и диффузии активных центров из зоны горения (см. ниже). При некоторой температуре (температура воспламенения) подогретая смесь воспламеняется — возникает зона горения с характерной для нее высокой температурой и обусловленной ею (а также высокой концентрацией активных центров) большой скоростью реакции. Протяженность (толщина) зоны горения обычно невелика и в случае обычных горячих пламен составляет величину порядка 0,1 мм (см., например, рис. 129). В этих случаях зону горения называют фронтом пламени. Вследствие большой скорости реакции концентрация активных центров во фронте пламени не успевает прийти к равновесию и обычно на несколько порядков превышает равновесную концентрацию при максимальной температуре пламени. Значительно превышающие равновесные значения имеют также концентрация электронов и интенсивность излучения фронта пламени. Однако абсолютные концентрации, активных частиц, как и концентрации электронов (и ионов) во фронте пламени, относительно невелики, а излучение света не играет существенной роли в тепловом балансе горячих пламен. Поэтому даже значительные отклонения концентраций атомов, радикалов и ионов и интенсивности излучения от равновесных значений не могут сказаться на величине конечной (максимальной) температуры Замени, устанавливающейся по завершению реакции горения на границе фронт пламени — зона сгоревших газов п определяющейся термодинамическим равновесием продуктов реакцип. [c.477]


    После воспламенения рабочей смеси от искры цепные реакции предпламенного окисления резко ускоряются в связи с повышением температуры и давления. Концентрация перекисей в рабочей смеси перед фронтом пламени возрастает, и появляется так называемое холодное пламя. Холодным пламенем называется своеобразное свечение реакционной смеси в результате возбуждения реагирующих молекул от тепла, выделяющегося при реакции окисления, и взрывного разложения накопившихся перекисей. В результате распространения холодного пламени в рабочей смеси продолжает возраст,ать количество перекисей, альдегидов, свободных радикалов. Такая активизация с.меси приводит к образованию вторичного холодного пламени. Температура повышается еще выше. В несгоревшей части смеси возрастает концентрация окиси углерода и различных активных частиц. В реакции окисления вовлекаются больше половины молекул не сгоревшей смеси. В результате последняя часть топливного заряда вместе с образовав-шейся окисью углерода мгновенно самовоспламеняются. Холодное пламя превращается в горячее, что и приводит к образованию детонационной волны и скачкообразному подъему давления. Следовательно, короче говоря, детонационное сгорание последней части топливного заряда происходит вследствие накопления до определенной предельной концентрации высокоактивных частиц, которые реагируют со скоростью взрыва, в результате вся несгоревшая часть горючей смеси мгновенно самовоспламеняется (теория Соколика). Очевидно, чем выше скорость образования перекисей в данной рабочей смеси, тем скорее возникает взрывное сгорание, тем раньше нормальное распространение фронта пламени перейдет в детонационное и последствия детонации скажутся сильнее. Отсюда следует, что основным фактором, от которого зависит возникновение и интенсивность детонации, является химический состав топлива, так как известно, что склонность к окисле нию у углеводородов различного строения при сравнимых условиях резко различна. Если в топливе преобладают углеводороды, не образующие в условиях предпламенного окисления значительного количества перекисей, то взрывного распада не произойдет, смесь не перенасытится активными частицами, и сгорание будет проходить с обычными скоростями, без детонации, [c.89]

    Наряду с возбужденными частицами — ОН (пламя Hg) и СО (пламя СО) и т. д., присутствующими в светящейся зоне пламени (зоне горения) в концентрациях, намного превосходящих их равновесные концентрации при температуре пламен, в зтих и многих других пламенах при помощи различных методов (см. 43) были обнаружены невозбужденные активные частицы — атомы и радикалы — также в концентрациях, на несколько порядков превышающих равновесные. Таковы, например, концентрации атомов водорода и кислорода и радикалов ОН, измеренные методом ЭПР [25] в разреженном водородном пламени при давлении 2,86 рт.. ст., температуре 993° К и различных содержаниях Hj и Og [c.475]


    На основании полученных результатов мы сделали попытку объяснить депрессирующее влияние исследуемых катионов. Различные свойства раствора образца могут являться определяющими для скорости распыления и размера капли вязкость, поверхностное натяжение, плотность и др. С изменением этих факторов из-за присутствия сопутствующих элементов может существенно изменяться скорость подачи анализируемого раствора в пламя, полнота испарения образующихся частиц и, следовательно, абсорбция. В связи с этим мы сделали попытку исследовать зависимость вязкости и скорости распыления раствора от концентрации анализируемых солей. С этой целью были сопоставлены данные влияния со значениями вязкости, и скорости распыления анализируемых растворов, показанными в табл. 3.18. [c.186]

    В зависимости от условий смешения газообразного топлива с воздухом можно получить пламя различной степени оветимости. Если топливо и воздух подаются в топочную камеру Топливо Воздух раздельно и их смешение происходит в рабочем пространстве топки, обра-зующееся пламя имеет ярко-соломенный цвет, обусловленный наличием в пламени твердых частиц углерода. На рис. 2-1 изображена схема распределения температур и концентраций во фронте пламени [Л. 14], на которой условно показано, что топливо подводится к зоне реакции с одной стороны, а -воздух —с дру- [c.25]

    В качестве примера, иллюстрирующего влияние активных частиц (атомов и радикалов) на процессы горения, рассмотрим ускорение процесса самовосиламенения под воздействием ОН и О смеси, состоящей из метана и воздуха. Источником ОН и О являлось диффузионное водородное пламя- В потоке воздуха в трубе сжигались небольшие количества водорода и на различном расстоянии от водородной горелки вводился горючий газ (рис. 5). Задержки воспламенения в зависимости от места ввода метана, т. е. от концентрации ОН и О в воздухе, при одной и той же температуре изменяются примерно на два порядка [13]. Таким образом, в процессе горения, когда зарождение активных частиц происходит сравнительно медленно или их мало (процессы воспламенения, [c.189]


Смотреть страницы где упоминается термин Концентрация различных частиц в пламенах: [c.475]   
Смотреть главы в:

Физическая химия быстрых реакций -> Концентрация различных частиц в пламенах




ПОИСК







© 2025 chem21.info Реклама на сайте