Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скандий ОКСИД

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Скандий Оксид скандия [c.191]

    Скандия оксид Скандий(П) оксид 712059-91-5 S O 4 а  [c.372]

    Скандий по значению атомного радиуса и энтальпии образования оксида ближе стоит к А1, чем к своим более тяжелым эле -тронным аналогам. Гидроксид скандия — слабое основание с a -фотерными свойствами соли 5с подвергаются заметному гидролизу. Между солями скандия и лантаноидами не всегда наблюдается изоморфизм. Скандий в большей степени, чем его электронные аналоги, склонен давать комплексные соединения. [c.506]

    Металлы подгруппы скандия и их соединения широкого применения пока не имеют. Однако в настоящее время намечаются пути использования соединений скандия в электронике некоторые ферриты, содержащие небольшие количества оксида скандия, применяются в быстродействующих счетно-решающих устройствах. Металлический скандий используется в электровакуумной технике как геттер (поглотитель газов). Оксид иттрия также применяется в производстве ферритов. Ферриты, содержащие иттрий, используются в слуховых приборах, в ячейках памяти счетно-решающих устройств. Изотоп У применяют в медицине. Лантан применяется главным образом в смеси с лантаноидами. [c.282]

    Все металлы побочной подгруппы III группы трехвалентны и проявляют преимущественно металлический характер. Их соли, например галогениды, ведут себя как соли типичных металлов, а оксиды довольно энергично соединяются с водой. Гидроксиды в воде расторимы слабо, но проявляют свойства сильных оснований, причем основность растет от скандия к лантану, что отличает эти металлы от металлов главной подгруппы III группы, проявляющих амфотерность. Исключение составляет скандий, гидроксид которого способен к диссоциации и по кислотному типу. [c.206]

    Как оксиды, так и гидроксиды обладают ярко выраженным основным характером, усиливающимся к Ас(ОН)з у гидроксида скандия обнаруживаются слабо выраженные амфотерные свойства. Все оксиды и гидроксиды легко растворяются в кислотах. [c.67]

    Оксиды элементов этой подгруппы представляют собой тугоплавкие белые вещества. Гидроксиды проявляют основные свойства, усиливающиеся в ряду Зс — V — Ьа. Так, соли скандия гидролизуются в значительной степени, а соли лантана практически не подвергаются гидролизу Ьа(ОН)з — сильное основание. [c.500]

    Характеристические соединения. Характеристические оксиды скандия и РЗЭ являются самыми прочными кислородными соединениями. Отрицательные величины энтальпий их образования значительно больше, чем для оксида алюминия (АЯ , 29э = —1675,7 кДж/моль)  [c.171]

    Здесь наблюдается постепенный переход от типично основных оксидов калия и кальция к амфотерным, или промежуточным (скандия, титана и ванадия), и к кислотным оксидам хрома и марганца. Этому соответствует и повышение окислительного числа металлов, образующих оксиды. То же наблюдается при рассмотрении изменения свойств оксидов одного и того же элемента в разной степени окисления. Так, например, в ряду [c.12]


    Скандий и РЗЭ по химической активности сравнимы с щ,елочно-земельными металлами. Стандартные электродные потенциалы меняются от —2,08 (S ) до —2,52 В (La). Скандий не растворяется в воде вследствие наличия пленки прочного оксида, образующегося в атмосфере воздуха. Остальные металлы подгруппы скандия и лантаноиды энергично разлагают воду. S и РЗЭ растворяются в разбавленных кислотах, за исключением плавиковой и фосфорной, из-за образования нерастворимых фторндов и фосфатов. ОЭО скандия и РЗЭ практически одинакова и меняется от 1,2 до 1,3. Эти элементы взаимодействуют с большинством неметаллов и металлов. [c.171]

    При обычной температуре поверхность скандия, иттрия и лантана окисляется кислородом с образованием защитных пленок, но при нагревании эти металлы горят в кислороде и образуют оксиды типа [c.406]

    Гадолиния оксид Гольмия оксид Дипрозия оксид Иттербия оксид Иттрия оксид Лантана оксид Лютеция оксид Неодима оксид Празеодима оксид Самария оксид Скандия оксид Туллия оксид Церия (IV) оксид Эрбия оксид [c.261]

    У алюминия по сравнению с бором атомный радиус больше, а потенциалы ионизации меньше, следовательно, возрастают металлические свойства. В отличие от неметалла бора алюминий является амфотерным элементом в широком смысле слова. Так, металлический алюминий и его гидроксид растворяются и в кислотах, и в щелочах, а А1(+3) образует и комплексные катионы, и ацидокомилек-сы. Алюминий по праву можно считать родоначальником как элементов подгруппы галлия, так и элементов подгруппы скандия. Это видно из рис. 23, на котором показан характер изменения энтальпий образования оксидов и галогенидов алюминия и элементов подгрупп галлия и скандия. [c.147]

    СОЕДИНЕНИЯ СКАНДИЯ ОКСИД СКАНДИЯ-Зс.Оз ХС 1, в реакции сплавления 5с 0, со щелочью проявляются амфо-терные свойства 5с20,  [c.102]

    Т1) монотонно увеличиваются атомные и ионные радиусы (см. рис. 17). Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться монотонно в противоположность ряду в—Т1. Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энта ьпий образования соединений элементов подгрупп скандия и галлия к типических элементов треть- Рис. 221. Сумма трех первых энер-ей группы (рис. 221). Как видно 1ИЙ ионизации атомов и энтальпии из рнс. 221, во всем ряду В- -Ас образования оксидов Э Оз элемен- [c.525]

    Следующие за скандием переходные элементы титан и ванадий V содержат соответственно два и три -электрона. Для них более характерны высшие степени окисления - -4 — для и - -4, + 5 — для V. Свойства соединений титана в высшей степени окисления напоминают свойства аналогичных соединений олова (например, жидкие тетрахлориды Т1С14 и 8пС 4, образование комплексов и т. д.). Соединения со степенью окисления +2 — сильные восстановители. Производные оксида титана (IV) Т10г — сложные оксиды титана — важные сегнетоэлектрические материалы. [c.154]

    Оксид скандия при сплавлении со щелочами образует скандиаты. Напишите уравнение реакции. Сходство с какими оксидами проявляет при этом оксид скандия  [c.165]

    Гидриды данных металлов получают нагреванием простых веществ в атмосфере водорода. Так, для скандия и иттрия известны гидриды 8сН2 и Н2, для лантана— ГаН2 и ЬаН,. Известны и другие гидриды элементов подгруппы скандия, которые относятся к фазам внедрения. Гидриды — твердые вещества серого или черного цвета, электронроводны. При нагревании на воздухе разлагаются с образованием оксидов и водорода, например  [c.357]

    В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Так, был неизвестен элемент четвертого периода скандий. По атомной массе вслед за кальцием шел титан, но титан нельзя было поставить сразу после кальция, так как он попал бы в третью группу, тогда как титан образует высший оксид Т10г, да и по другим свойствам должен быть отнесен к четвертой группе. Поэтому Менделеев пропустил одну клетку, т. е. оставил свободное место между кальцием и титаном. На том же основании в четвертом периоде между цинком и мышьяком были оставлены две свободные клетки, занятые теперь элементами галлием и германием. Свободные места остались и в других рядах. Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. Одному из них, которому в будущем предстояло занять место между кальцием и титаном, он дал название экабор (так как свойства его должны были напоминать бор) два других, для которых в таблице остались свободные места между цинком и мышьяком, были названы экаалюминием и экасилицием. [c.76]

    Оксиды иттрия и других редкоземельных металлов входят в состав керамики, обладающей высокотемпературной сверхпроводимостью (разд. 33.4). Оксиды также используются как катализаторы, люминофоры. Из оксида иттрия получается совершенно прозрачная керамика, выдерживающая нагревание до 2200 °С. Оксиды скандия и иттрия также применяются в пр<зизводстве ферритов. Ферриты, содержащие иттрий, используются в слуховых приборах, в ячейках памяти счетно-решающих устройств. Изотоп иттрия здУ применяется в медицине. [c.500]


    Г а л и д ы ЭГз получают непосредственным взаимодействием скандия и его аналогов с галогенами или взаимодействием металлов, оксидов или гидроксидов с соответствующими галогеноводородными кислотами. Фториды резко отличаются от остальных га-лидов они тугоплавки, не гигроскопичны, в воде не растворяются. Хлориды, бромиды и иодиды, напротив, гигроскопичны, легко растворимы в воде и довольно значительно гидролизуются с образованием оксогалогенидов ЭОГ, например  [c.356]

    Все оксиды белого цвета, тугоплавки. Оксиды скандия и иттрия трудно растворимы в воде и разбавленных кислотах. Оксиды лантана и актиния тоже трудно растворимы в воде, но легко растворимы в минеральных кислотах с образованием солег . Оксиды лантана и актиния энергично взаимодействуют с водой, образуя нерастворимые гидроксиды. Все оксиды этих металлов обладают основным характером, усиливающимся к АсаОд только у оксида скандия обнаруживаются слабо выраженные амфотерные свойства. [c.357]

    Отношение к кислороду. При обычных условиях скандий, иттрий и лантан окисляются с поверхности кислородом с образованием защитной пленки. В нагретом состоянии эти металлы сгорают в кислороде, образуя оксиды состава МегОз. Наиболее энергично окисляется лантан, что следует из сопоставления теплот образования оксидов ЗсгОз, УгОз и ЬзгОз, которые соответственно равны 284, 295, ЗП кдж1г-экв. [c.64]

    Достаточно выраженные поляризующие свойства ионов обусловливают склонность к образованию комплексных соединений. Оксиды и гидроксиды. Оксидам скандия, иттрия и лантана отвечает общая формула МеаОз. Последние могут быть получены термическим разложением нитратов, карбонатов и оксалатов. Например, при разложении нитратов образуются следующие вещества  [c.66]

Рис. 23. Энтальпии образовяния оксидов и галоге-нндов алюминия и элементов подгрупп галлия и скандия Рис. 23. Энтальпии образовяния оксидов и <a href="/info/868434">галоге</a>-нндов алюминия и <a href="/info/1484740">элементов подгрупп галлия</a> и скандия
    К обсуждаемой подгруппе относятся и лантаноиды — 14 элементов, следуюи1,их за лантаном, для которых характерно заселение (п—2)/-орбиталей. Все лантаноиды вместе с иттрием п лантаном именуются редкоземельными элементами (РЗЭ). Название происходит от средневекового наименования природных оксидов — земли (как и щелочно-земельных металлов). К ним обычно не относят скандий. Элементы подгруппы скандия (Зс, У и Ьа) проявляют характеристическую степень окисления +3, а некоторые лантаноиды, помимо указанной главной степени окисления, еще проявляют степени окисления +2 и +4. [c.168]

    Оксиды скандия и РЗЭ — бесцветные (большинство), тугоплавкие и труд1юрастворимые в воде вещества, хотя интенсивно (с выделением теплоты) взаимодействуют с ней с образованием характеристических гидроксидов Э(ОН)з. Получают оксиды прокаливанием соответствующих гидроксидов, нитратов и карбонатов. Гидроксиды получают действием растворов щелочей на растворимые соли скандия и РЗЭ. Гидроксиды также труднорастворимы в воде. В подгруппе скандия растворимость гидроксидов растет 5с(ОН)з (рПР 28), Y(ОН)з (рПР 22,8), Ьа(ОН)з (рПР 18,9). А все гидроксиды лантаноидов характеризуются примерно такой же растворимостью, как (ОН)з (порядок величины рПР 22—23). Гидроксид скандия — амфолит с более сильно выраженными основными свойствами, а гидроксиды РЗЭ представляют собой довольно сильные основания. В ряду лантаноидов основная сила гидроксидов постепенно уменьшается с уменьшением радиусов Э + в результате лантаноидной контракции. С уменьшением ионных радиусов растет их удельный заряд и связь с кислородом становится более прочной. Поэтому гидроксиды [c.171]

    Характеристические тригалогениды скаидпя и РЗЭ в отличие от аналогичных соединений элементов подгруппы галлия тугоплавки и труднолетучи. Трифториды практически нерастворимы в воде, а остальные ЭГз растворяются не только в воде, но и в низших спиртах. Ниже приводим значения энтальпий образования (АН 2эв, кДж/моль) трифторидов элемеитов подгруппы скандия и тех РЗЭ, для оксидов которых выше были показаны эти характеристики  [c.172]

    Теплоты образования трифторидов несколько уступают таковым для оксидов, но почти в два раза больше, чем для хлоридов и бромидов рассматриваемых элементов. В подгруппе скандия энтальпии образования ЭР з закономерно возрастают, а в ряду лантаноидов имеет место довольно слабое последовательное уменьшение теплот образования для всех галогенидов ЭГз. Естественно, от фторидов к иодидам теплоты образования убывают для всех элементов. При сильном нагревании на воздухе трифториды сначала превращаются в оксо-с ггориды ЭОР, а затем в оксиды. Для хлоридов подобное же превращение наблюдается при нагревании кристаллогидратов. [c.172]

    Общая характеристика элементов подгруппы IIIВ. Атомы элементов подгруппы 1ПВ характеризуются электронной конфигурацией (п—l)ii ns2. Поэтому их максимальная валентность три. Все они могут существовать вформе ионовЭ , образуют оксиды Э Оз и гидроксиды Э(ОН)з основного характера, усиливающегося от скандия к актинию. Восстановительный характер элементов близок к щелочноземельным. Их электродные потенциалы соответственно (в) —2,08 —2,37 —2,40 —2,6. Все они рассеянные и редкие. Получают их сложной переработкой руд цветных металлов. Актиний радиоактивный. [c.326]

    Оксиды Э2О3 бесцветные, тугоплавкие, легко растворяются в кислотах, образуя соли. Гидролиз солей незначителен и усиливается от солей лантана к солям скандия. Ионы бесцветны, так как имеют во внешнем уровне по восемь электронов и обладают слабым поляризующим действием. Но благодаря довольно высокому заряду (34-) они склонны к образованию комплексных соединений К[5ср4 1, Кз(5сРб1, К(Ьа(СОз)2], Кз[5с(804)з1 и др. [c.326]


Смотреть страницы где упоминается термин Скандий ОКСИД: [c.529]    [c.194]    [c.529]    [c.248]    [c.54]    [c.640]    [c.640]    [c.261]    [c.144]    [c.57]    [c.20]    [c.422]    [c.148]    [c.179]    [c.406]   
Химический энциклопедический словарь (1983) -- [ c.529 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.529 ]

Вредные химические вещества Неорганические соединения элементов 1-4 групп (1988) -- [ c.248 , c.261 , c.484 ]

Неорганическая химия (1974) -- [ c.344 ]

Неорганическая химия Издание 2 (1976) -- [ c.399 ]

Общая и неорганическая химия (1981) -- [ c.499 , c.501 ]

Машинный расчет физико химических параметров неорганических веществ (1983) -- [ c.105 , c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Скандий



© 2025 chem21.info Реклама на сайте