Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр молекулярный

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]


    Использование Раман-эффекта в качестве способа изучения спектров молекулярных колебаний основано на том, что эти колебания подчиняются правилам квантования, так как представляют собой колебания в структурах молекулярных размеров. Если сквозь прозрачное вещество проходит электромагнитное излучение какой-нибудь одной определенной частоты (так называемый монохроматический свет), то некоторые молекулы вещества, поглощая энергию излучения, будут совершать вынужденные колебания. Если частота падающего излучения V,-, то энергия его равна hvl. Когда молекулярные осцилляторы поглощают часть энергии падающего излучения, его энергия, а следовательно, и частота уменьшаются до некоторого нового значения Vg, так что поглощенная веществом энергия = /гv,—/гvo. Но эта энергия была отнята у первичного пучка молекулами, вынужденными колебаться с какой-то собственной частотой V, и, следовательно, энергия, потерянная излучением, должна быть равна энергии, поглощенной молекулами, то есть [c.185]

    Экспериментальные установки по определению свойств веществ и соединений отличаются сложностью, а сам процесс получения необходимых свойств — длительностью во времени (и, следовательно, трудоемкостью), необходимостью поддержания задан- ных условий проведения эксперимента (по температуре, давлению и т. д.). К тому же во многих случаях анализ полученных результатов представляет собой сложную вычислительную задачу (например, расшифровка хроматограмм, ЯМР-спектров, молекулярных структур и т. д.). Получить достоверные данные традиционными методами в таких случаях практически невозможно. [c.60]

    Электронные спектры позволяют также обнаружить свободные радикалы и другие промежуточные продукты сложных газовых реакций. Полученные из спектров молекулярные константы дают возможность определять теплоты образования молекул из простых веществ и по формулам статистической термодинамики рассчитывать химическое равновесие в реакциях с участием газов, а значит, и управлять процессами горения и другими высокотемпературными реакциями. [c.168]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]


    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]

    Поскольку макромолекулярные системы обычно обладают широкими спектрами молекулярных контактов, то тиксотропия проявляется только при особых условиях, способствующих сужению спектра, например, при значительном разбавлении или в начальной стадии студнеобразования, когда не наступило еще образования структур из ориентированных участков макромолекул. [c.487]

    Среди физических методов исследования молекул особую роль играет изучение молекулярных спектров. Молекулярные спектры называют полосатыми, так как они состоят не из линий (как атомные спектры), а нз обладающих сложной структурой полос. [c.524]

    Характерной особенностью физических методов анализа и аналитических процессов, лежащих в их основе, является высокая разрешающая способность , которая проявляется в дискретности характеристических сигналов (см рис. 4,5), регистрируемых в виде линейных спектров или острых пиков. Эта особенность присуща большинству ядерно-физических (ЯМР, активационный анализ) методов, а также методам рентгеновской, атомно-эмиссионной и абсорбционной спектроскопии. Причина высокой разрешающей способности этих методов — в относительно высоких значениях характеристических квантов энергии, сопровождающих переход из возбужденного состояния в основное (или наоборот) в процессе ядерных превращений и при переходах электронов на близких к ядру уровнях. Следствием высокой разрешающей способности физических методов является их высокая специфичность, проявляющаяся в почти полном отсутствии эффектов наложения сигналов элементов друг нз/друга. Однако нередко на основные сигналы накладываются сигналы сопутствующих процессов. Так, хотя спектральная линия атомного поглощения элемента характеризуется шириной не выше 0,1 нм, на нее часто накладывается спектр молекулярного поглощения соединений, образуемых элементом основы (матрицы) в условиях атомизации. [c.15]

    Некоторые студни полимеров обладают явно выраженными тиксотропными свойствами. У таких студней прочность связей между макромолекулами должна быть достаточно малая, чтобы они могли легко разрушаться иод действием приложенного усилия сдвига. Кроме того, у подобных студней должен быть достаточно узкий спектр молекулярных контактов. Студни, у которых этот спектр размыт, обычно не проявляют тиксотропии. В,самом деле, когда связность структуры нарушается путем механического воздействия, при узком спектре молекулярных контактов большинство связей разрушается и затем восстанавливается при стоянии системы. Это и составляет сущность явления тиксотропии. Если же спектр контактов широкий, разрушается только небольшое число связей, обладающих наименьшей прочностью. Система распадается на большие куски, которые не могут соединиться и образовать структуру с первоначальным значением критического напряжения сдвига. [c.487]

    Возможность детектировать почти все элементы, которые могут быть возбуждены гелием, а также некоторые стабильные изотопы ( В, С, К), основанная на несколько смещенном эмиссионном спектре молекулярных линий по сравнению со спектром обычных изотопов. [c.617]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]


    Летучими называют соединения, способные испаряться и конденсироваться без изменения состава при умеренной (ниже 700—800 К) температуре. Признаки летучести возможность сублимации (возгонки) вещества присутствие в масс-спектре молекулярных соединений или осколочных металлосодержащих ионов. [c.162]

    УФ-спектрометрический метод широко используется для исследований донорно-акцепторного взаимодействия в процессах радикальной полимеризации, в частности при сополимеризации малеино-вого ангидрида со стиролом, п-диоксеном, винилциклогексаном, виниловыми эфирами и др. В спектрах молекулярных комплексов могут наблюдаться полосы поглощения, характерные для свободных донора (Д) и акцептора (А), а также несколько полос переноса заряда , соответствующих различным возбужденным состояниям и А" [23]. В ряде случаев спектр частично диссоциированного в растворе комплекса несколько искажается налагающимся поглощением свободных компонентов, но оно недостаточно для того, чтобы помешать определению общего вида кривых поглощения. [c.191]

    Основные принципы квантовой механики. Теория Бора, которая кратко была охарактеризована в предыдущем параграфе, позволила вычислить положение (частоты) спектральных линий атома водорода. Однако эта теория не могла объяснить спектры других атомов. Даже для гелия удавалось с помощью этой теории получить только качественные соотношения. Совсем не удалось согласовать теорию со спектром молекулярного водорода. Даже для атомарного водорода можно было рассчитать только частоты, но не удавалось определить интенсивность линий п их тонкую структуру, наблюдаемую с помощью спектральных приборов большой разрешающей способности. [c.182]

    Уравнения (4.66) — (4.68) для энергии взаимодействия справедливы и в классической и в квантовой механике. Различие состоит лишь в расчете моментов (г и 0, причем эти моменты могут быть вычислены только квантовомеханическими методами, тогда как с помощью классической механики этого сделать нельзя. Другими словами, плотность заряда р должна быть найдена с помощью квантовомеханических расчетов. Практически такие расчеты трудно выполнить с желаемой точностью, поэтому предпочтение отдается экспериментальному определению моментов. Дипольный момент можно определить по диэлектрическим свойствам или, например, по эффекту Штарка в микроволновом спектре. Молекулярным дипольным моментам посвящена обширная литература компактный обзор по этому вопросу приведен в работе Уэтерли и Уильямса [57]. Определить экспериментально квадрупольный момент гораздо сложнее. Для этого используются такие обусловленные давлением эффекты, как уширение микроволнового спектра и поглощение в инфракрасной части спектра. Обзор всех этих методов приводится в работе Букингема [55]. Около половины известных в настоящее время [c.196]

    Строя теорию спектров молекулярных кристаллов, Давыдов показал, что в регулярной совокупности хромофорных групп между их возбужденными энергетическими уровнями может происходить резонансная передача энергии возбуждения. Следовательно, в регулярной системе возможно распространение волны возбуждения — экситона. В результате взаимодействия энергетических уровней они расщепляются, образуя широкую [c.286]

    Резонансное взаимодействие, определяющее миграцию энергии, подобно экситонному взаимодействию в молекулярных кристаллах, исследованному Давыдовым (см. стр. 286). Различие этих двух явлений имеет количественный характер. Миграция энергии происходит при большой энергии взаимодействия, сильно превышающей ширину электронно-колебательной зоны. В этом случае сильного взаимодействия передача энергии происходит весьма быстро, и можно не учитывать влияния колебаний. Соответственно, в отличие от экситонных спектров молекулярных кристаллов, возникающих при слабом взаимодействии (энергия взаимодействия значительно меньше ширины зоны, но много больше ширины отдельного колебательного подуровня), в спектрах резонансно взаимодействующих молекул не наблюдается колебательная структура. [c.323]

    Исследования этого рода дают возможность успешно разрешить ряд проблем теории химической связи, особенно различных видов мостиковых связей [3], оценить реакционную способность алюминийорганических соединений, классифицировать и объяснить спектры молекулярных колебаний [4], а также изучить их диэлектрические свойства [2, 5]. [c.131]

    Асфальтены - концентрат наиболее высокомолекулярных соединений нефти (в основном ГАС) со спектром молекулярных масс от 1500 до 4000. В нефти они находятся в виде коллоидных частиц, а будучи вьщелены из нефти, представляют собой твердые аморфные частицы черного цвета. Содержание асфальтенов в нефти обычно не превышает 10% (мае.). Они более бедны водородом, чем смолы (Н С =9+11%), и концентрация гетероэлементов в них выше (серы - до 9, азота - до 3, кислорода - до 8, металлов - до 0,15%). [c.98]

    З N — 6 (или 3 N — 5 в случае линейных молекул) колебательных К. ч. При описании мол. орбиталей в квантовой химии примен. также нецелые эффективные главные квантовые числа, имитирующие главное К. ч. п. Специальные наборы К. ч. использ. для задания спинов ядер, спина всей системы ядер молекулы и сумм спина ядер с др. моментами молекулы. К. ч. широко использ. при аиализе структуры спектра молекулярных и атомных систем с помощью К. ч., как правило, формулируются правила отбора. В. И. Пупышев. КВАНТОВЫЙ ВЫХОД, отношение числа молекул, участвующих в фотохим. илн фотофиз. процессе, к числу поглощенных фотонов. Для фотохим. р-ций К. в. рассчитывают в единицу времени (дифференциальный К. в.) или в нек-рый промежуток времени (интегральный К. в.). Исходя из значений К. в. определяют скорости фотохим. р-ций, константы скорости первичных фотопроцессов и др. К. в. неценных фотохим. р-ций изменяегся от очень малых значений до 1 для цепных процессов он м. б. значительно больше 1, наир- для р-ции хлора с водородом — 10 — 10 . От К. в. следует отличать квантовую эффективность, к-рая равна отношению скорости процесса к скорости образования того возбужденного состояния, из к-рого протекает данный процесс. К. в. равен квантовой эффективности только для процессов, происходящих иэ синглетного возбужденного состояния. [c.252]

    Вид спектра поглощения определяется как природой образующих его атомов и молекул, так и агрегатным состоянием в-ва. Спектр разреженных атомарных газов-ряд узких дискретных линий, положение к-рых зависит от энергии основного и возбужденных электронных состояний атомов. Спектры молекулярных газов-полосы, образованные тесно расположенными линиями, соответствующими переходам между колебательным и вращательным энергетич. уровнями молекул. Спектр в-ва в конденсиров. фазе определяется не только природой составляющих его молекул, ио и межмол. взаимодействиями, влияющими на структуру электронных уровней. Обычно такой спектр состоит из ряда широких полос разл. интенсивности. Иногда в нем проявляется структура колебат. уровней (особенно у кристаллов при охлаждении). Прозрачные среды, напр, вода, кварц, не имеют в спектре полос поглощения, а обладают лишь границей поглощения. [c.14]

    Вт/см и т. д. В столь интенсивном поле атом или молекула из конечного состояния дискретного спектра обычно быстро переходит в ионизац. непрерьганый спектр (континуум) соответствующий (п + 1)-фвтонный процесс наблюдается по возникновению в системе заряженных частиц (электронов или ионов). В случае молекул часто происходит их фрагментация и наблюдается масс-спектр молекулярных и фраг-ментных ионов и радикалов. [c.99]

    В [575, 579] подчеркивается, что микродинамика граничной воды может быть тесно связана с микродинамикой границ раздела, вблизи которых она формируется. К. Пакер [575] предложил модель микродинамики граничной воды, в которой разделены быстрые (/) и медленные (s) движения, связанные с подвижностью индивидуальных молекул воды (/) и переориентацией микрообластей (время корреляции тл) или конечным временем пребывания молекулы воды в пределах данной мик-рообластн [Tiat d /(4Z))] (рис. 14.1). Вклад медленных движений в спектр молекулярных движений воды может возникать вследствие заторможенной подвижности воды вблизи активных центров поверхности, анизотропии ориентационного упорядочения или анизотропии коэффициента трансляционной диффузии вблизи межфазной границы. [c.231]

    Ионизация определяемого вещества осуществляется либо путем химической ионизации с использованием растворителя, либо за счет термораспыления. В первом случае используются электроны с распылительного электрода или нити накала для ионизации молекул растворителя, что затем инициирует перенос заряда на определяемое вещество. Другой вариант основан на механизме ионного испарения из капель, в которые включен летучий растворитель. В зависимости от того, используется ли разрядный электрод, изменяется механизм ионизации, что сильно изменяет селективность. Ионное испарение обычно приводит к ионам [М-ЬН]" " для проб с высоким сродством к протону. Или же детектируются ионы [М4-КН4] , если в буфере присутствует, например в форме ацетата аммония. Если детектируют отрицательно заряженные ионы, обнаруживаются либо ионы [М+Н] , либо отрицательно заряженные кластерные ионы, образуемые молекулами определяемого вещества и растворителя или анионами буфера. Однако оба варианта ионизации являются мягкими, поэтому приводят лишь к ограниченной фрагментации. Тем не менее, для получения характеристичного спекара фрагментации в ТРС-ЖХ-МС-анализе часто используют двойные квадрупольные приборы. В отличие от одинарных квадрупольных приборов, МС/МС-приборы позволяют получать фрагментационный спектр молекулярных ионов, выделяемых первым квадру-полем (рис. 14.3-3). Ионы вводятся через отсекатель с маленьким отверстием, который достигает непосредственно ионизационной камеры. Это позволяет достигать высокого вакуума, требуемого для разделения ионов. [c.623]

    Присутствие в масс-спектре молекулярного иона с массой 220 свидетельствует о высокой устойчивости исследуемого соединения, а изотопные пики показывают, что молекула содержит четыре атома кислорода. Эти данные приводят к эмпирической формуле С12Н12О4 (см. табл. 8). Характер масс-спектра говорит о ясно выраженной [c.62]

Рис. 2в. Спектры молекулярных колебаний поворотных иаомеров димера и тримсров (условия расчета такие /1.е, как для рнс. 25) Рис. 2в. <a href="/info/986447">Спектры молекулярных колебаний</a> поворотных иаомеров димера и тримсров (условия <a href="/info/15003">расчета</a> такие /1.е, как для рнс. 25)
    При поглощении молекулой кванта с частотой расстояние между атомами в молекуле при колебании увеличивается настолько, что связь разрушается, молекула диссоциирует на атомы. В этом случае вместо линейчатого спектра (молекулярного) будем иметь сплошной (атомш>1Й) спектр, поскольку поступательное движение свободных диссоциированных атомов не квантуется (речь идет о двухатомной молекуле для сложных молекул ситуация усложняется). [c.115]


Смотреть страницы где упоминается термин Спектр молекулярный: [c.146]    [c.61]    [c.231]    [c.83]    [c.30]    [c.672]    [c.189]    [c.201]    [c.62]    [c.60]    [c.429]    [c.394]    [c.399]    [c.653]    [c.389]    [c.264]    [c.748]    [c.267]    [c.91]   
Физическая химия (1987) -- [ c.661 , c.669 ]

Краткий курс физической химии Изд5 (1978) -- [ c.89 ]

Практические работы по физической химии (1961) -- [ c.312 ]

Связанный азот (1934) -- [ c.56 , c.61 ]

Электроника (1954) -- [ c.433 ]

Инструментальные методы химического анализа (1989) -- [ c.20 ]

Электронное строение и химическая связь в неорганической химии (1949) -- [ c.120 , c.121 , c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Азот молекулярный фотоэлектронный спектр

Альдегиды, корреляция между молекулярной структурой и масс-спектрами

Амины, корреляции между молекулярной структурой и масс-спектрами

Анализ по молекулярным спектрам

Анализ по молекулярным спектрам Влияние изотопии на молекулярные спектры

Борна—Оппенгеймера приближения при молекулярных спектров

Введение в теорию молекулярных спектров

Взаимодействие между световыми и молекулярными колебаниями 1 в инфракрасном спектре и спектре Рамана

Виды движения в молекуле и типы молекулярных спектров — Разделение энергии молекулы на части и основные типы спектров

Влияние молекулярной симметрии и хиральности на спектры протонного магнитного резонанса

Возбуждение молекулярных полос и сплошного спектра

Вращательные молекулярные спектры

Г лава 9 общие сведения о природе колебательных спектров многоатомных молекул Характер молекулярных спектров

Гора к, Б. Шнейдер, В. Бажан т. Молекулярные спектры метилфенилсилоксанов

Графическая обработка измерений почернения спектральной линии в молекулярных спектрах

Дейтерий молекулярный спектр

Зоммерфельд тонкая структура молекулярные спектры

ИЗОТОПНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ изотопическая и сверхтонкая структура в атомных и молекулярных спектрах Структура спектральных линий

Изотопический эффект в молекулярных спектрах

Изотопическое смещение в молекулярных спектрах

Изотопное смещение в молекулярных спектрах

Изотопный анализ по молекулярным спектрам

Изучение молекулярных спектров излучения

Изучение по спектрам МНПВО кремнекислородных слоев, синтезированных методом молекулярного наслаивания

Индолы, корреляции между молекулярной структурой и масс-спектрами

Интерпретация молекулярных Спектры поглощения н-пропил- колебаний метаксилола

Колебательные молекулярные спект. 3. Вращательно-колебательные спектры

Колебательные молекулярные спектры

Корреляции между молекулярной структурой и масс-спектрами

Корреляция между тонкой структурой спектров ЯМР и молекулярной структурой

МОЛЕКУЛЯРНАЯ СПЕКТРОСКОПИЯ Чисто вращательные спектры

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ И СТРОЕНИЕ МОЛЕКУЛ Расчет спектральных и других молекулярных характеристик Плотников, В. И. Данилова. Спектральное и физико-химическое поведение ге-электронов

МОЛЕКУЛЯРНЫЙ АНАЛИЗ Г10 КОЛЕБАТЕЛЬНЫМ СПЕКТРАМ Молекулярный анализ по инфракрасным спектрам поглощения

МОЛЕКУЛЯРНЫЙ АНАЛИЗ ПО ЭЛЕКТРОННЫМ СПЕКТРАМ ПОГЛОЩЕНИЯ общие характеристики электронных спектров сложных молекул Понятие о квантовомеханическом описании электронных спектров

Масс-спектры определение молекулярного веса

Меркаптаны, корреляции между молекулярной структурой и масс-спектрам

Многоатомные молекулы. Молекулярные константы многоатомных молекул, молекулярные спектры

Молекула. Химическая связь. Молекулярные спектры

Молекулярная спектроскопия I Двухатомные молекулы Молекулярные константы двухатомных молекул, молекулярные спектры

Молекулярная структура и масс-спектр

Молекулярные соединения спектры, природа

Молекулярные спектры Спектры двухатомных молекул, Спектры многоатомных молекул

Молекулярные спектры двухатомных молекул

Молекулярные спектры и межмолекулярное взаимодействие

Молекулярные спектры колебательно-ротационные

Молекулярные спектры многоатомные молекулы

Молекулярные спектры строение

Молекулярные спектры. Краткие сведения о технике эксперимента

Молекулярные спектры. Принцип Франка — Кондона

Молекулярные термы и спектры

Молекулярные электронные спектры поглощения

Молекулярный абсорбционный спектральный анализ (спектрофотометрия) в ультрафиолетовой и видимой области спектра (185—760 нм)

Молекулярный анализ по спектрам комбинационного рассеян и я света

Молекулярный вес, определение по инфракрасным спектрам

Молекулярный вес, определение по масс-спектру

Молекулярный спектральный анализ Молекулярные спектры

Молекулярный спектральный анализ по спектрам комбинационного рассеяния

Молекулярный спектральный анализ по спектрам комбинационного рассеяния сита и излучению молекул

Нитрилы, корреляции между молекулярной структурой и масс-спектрами

Нитриты, корреляции между молекулярной Нитроанилин, масс-спектр

Нитриты, корреляции между молекулярной Нитроаннлин, масс-спектр

Нитриты, корреляции между молекулярной структурой и масс-спектрами

Нитрозоамины, корреляции между молекулярной структурой и масс-спектрам

Нитрозосоединение, корреляции между молекулярной структурой и масс-спектрами

Нитросоединения, корреляции между молекулярной структурой и масс-спектрами

Нитросоединения, корреляции между молекулярной структурой и масс-спектрами Нонан, масс-спектр

Нитросоединения, корреляции между молекулярной структурой и масс-спектрами Нонанол, масс-спектр

Общие сведения о молекулярных спектрах

Определение брутто-формулы по пику молекулярного иона в масс-спектрах высокого разрешения

Определение молекулярных параметров двухатомных молекул из инфракрасных колебательно-вращательных спектров

Определение энергии диссоциации двухатомных молекул по молекулярным спектрам поглощения

Относительная интенсивность полос в молекулярных спектрах Принцип Франка — Кондона

Полосатые спектры также Молекулярные спектры

Правила отбора в молекулярном спектре

Представление о молекулярных спектрах

Принципы изотопного спектрального анализа по молекулярным спектрам

Природа молекулярных спектров

Происхождение молекулярных спектров

Резонанс и молекулярные спектр

Резонанс и молекулярные спектры 1 Типы спектров

Релаксационные спектры и молекулярное строение

Рефрактометрия и интерферометрия Молекулярные спектры

Спектр молекулярные колебания

Спектроскопия молекул. Общая характеристика и использование молекулярных спектров

Спектроскопия молекул. Общая характеристика молекулярных спектров

Спектры атомные и молекулярные

Спектры кристаллов молекулярных

Спектры поглощения молекулярные

Строение молекул. Молекулярные спектры

Строение молекулярных электронных 3. Спектры поглощения кристалспектров

Тиофены, корреляции между молекулярной структурой и масс-спектрами

Тиоэфиры, корреляции между молекулярной структурой и масс-спектрами

Ультрафиолетовые спектры молекулярно адсорбированных и ионизованных при адсорбции цеолитами веществ

Фенолы, корреляция между молекулярной структурой и масс-спектрами

Фотометрирование молекулярных спектров на регистрирующем микрофотометре

Франк граница полос спектров молекулярные спектры

Центры тяжести спектров ионных серий и факторы четности классов соединений с низкой или нулевой интенсивностью пиков молекулярных ионов

Чувствительные канты молекулярных спектров

Электромагнитный спектр и атомные или молекулярные про Ф цессы

Электромагнитный спектр и атомные или молекулярные процессы

Элементы теории молекулярных спектров

спектр молекулярная масса

спектр молекулярная рефракция

спектры комплексов молекулярного азота

спектры метод молекулярных орбит

спектры молекулярная ассоциация

спектры молекулярное вращение

спектры молекулярных ситах



© 2025 chem21.info Реклама на сайте