Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фолиевая кислота, ее производные как коферменты

    Процессы метилирования теснейшим образом связаны с метаболизмом метионина, который синтезируется из гомоцистеина путем переноса на него метиЛьной группы. Источниками метильной группы при биосинтезе метионина могут быть одноуглеродные фрагменты глицина, серина, треонина. Этот процесс осуществляется с помощью коферментов — производных фолиевой кислоты и витамина Bij. [c.113]


    Молекула фолиевой кислоты (I) и ее производных, осуществляющих функции кофакторов в процессах метаболизма, таких, как 5,6,7,8-тетрагидро-птероил- -глутаминовая кислота, 5-N-фopмил-5,6,7,8-тeтpaгидpoптepoил-L-глутаминовая кислота (фолиновая кислота) и др. (см. раздел Птериновые коферменты ), в основной своей части высокоспецифична. Так, для проявления витаминных свойств обязательна птериновая структура, [c.485]

    Дигндробиоптерин, являющийся производным фолиевой кислоты, играет роль кофермента при гидроксилировании фенилаланина. [c.209]

    Некоторым витаминам принадлежит особо важная роль в азотистом обмене. Подвергаясь в организме фосфорилированию, а в некоторых случаях более сложным превращениям, они дают начало образованию небелковых компонентов ферментов, катализирующих реакции превращения аминокислот. Витамин Ва (флавин) является составной частью кофермента оксидазы О- и .-аминокислот и аминооксидаз. Пантотеновая кислота входит в состав кофермента ацилирования, играющего важную роль в обмене безазотистых соединений, образующихся из аминокислот (а-кетокислот и др.) и ряда азотистых веществ. Фолиевая кислота и ее производные участвуют в процессах, приводящих к использованию метильных групп метионина, формильных, оксиметильных групп (остатков муравьиной кислоты и формальдегида), возникающих при превращении ряда аминокислот (серина, глицина, гистидина, триптофана). Особо важное место в азотистом обмене занимает витамин В( (пиридоксаль). В виде своего фосфорного эфира Вд служит коферментом ряда ферментов, участвующих в превращениях аминокислот. В частности, ферменты, катализирующие переаминирование аминокислот, содержат в виде кофермента пиридоксальфосфат. Авитаминоз В сопровождается, особенно у микроорганизмов, ослаблением и даже прекращением реакций переаминирования. Пиридоксальфосфат является также коферментом декарбоксилаз аминокислот. Вместе с этим тшридоксальфосфат входит (в виде кофермента) в состав ряда других ферментов, участвующих в превращениях определенных аминокислот (триптофана, серина, серусодержащих аминокислот). [c.433]

    Все фолиевые коферменты, участвующие в переносе и взаимопревращении одноуглеродных групп атомов со степенью окисления уровня муравьиной кислоты, формальдегида и метанола, являются производными 5,6,7,8-тетрагидрофолиевой кислоты (50). [c.603]

    Пиразино[2,3-г/]пиримидины известны как птеридины [197], поскольку впервые природные соединения с подобной бициклической системой были обнаружены в пигментах, таких, как ксантоптерин (желтый), содержащийся в крыльях бабочек (Ьер1йор1ега). Впоследствии птеридиновая циклическая система была обнаружена в коферментах, использующих тетрагидрофолиевую кислоту (производное витамина фолиевой кислоты), кофакторах оксомолибдоферментах [198] и родственных ферментах, содержащих вольфрам. Птеридиновая система также присутствует в противоопухолевом препарате метотрексате. [c.294]


    N , N -метилентетрагидрофолат принадлежит к семейству коферментов, представляющих собой производные фолиевой кислоты подобно S-аденозилме-тионину и коферменту эти про- [c.658]

    Как уже указывалось, п-аминобензойная кислота является веществом, необходимым для роста многих бактерий, в том числе патогенных пневмококков (возбудители пневмонии, или воспаления легких), менингококков (возбудители менингита), гонококков (возбудители гонореи), дизентерийных бактерий и ряда других. В средах, не содержащих п-аминобензойной кислоты, все эти патогенные микроорганизмы размножаться не могут. По-видимому, п-аминобензойная кислота играет роль кофермента в каких-то важных ферментных системах бактерий. Вероятно, она необходима для синтеза этими микроорганизмами фолиевой кислоты и ее производных. [c.179]

    В состав ТГФ входят восстановленный птеридин, /г-аминобензойная кислота и L-глутаминовая кислота. Полиглутаминовые производные ТГФ, содержащие до семи остатков глутаминовой кислоты, связанных посредством у-глута-мильных пептидных связей, также встречаются в биологических системах и осуществляют те же биологические функции, что и ТГФ. После того как обнаружилось, что фолиевая кислота является фактором роста для молочнокислых бактерий, начались исследования по выяснению биохимической роли ТГФ-коферментов. Зависимость роста молочнокислых бактерий от фолиевой кислоты была использована в качестве теста при очистке и выделении этого вещества, что дало возможность исследовать его структуру. В ранних работах удавалось выделить только фолиевую кислоту, что объясняется легким окислением ТГФ. Фолиевая кислота может быть ферментативно восстановлена до ТГФ. Для дигидрофолата возможны три структурных изомера (7,8-, 5,6- и 5,8-) однако как при химических, так и при ферментативных реакциях был однозначно идентифицирован только 7,8-изомер. [c.226]

    Большую роль в процессах метаболизма, в частности в синтезе нук-леопротеидов, играют коферменты, относящиеся к производным фолиевой кислоты. Строение тетрагидрофолиевой кислоты показано ниже [c.77]

    Аналоги витаминов, способные замещать витамины в ферментах, по химической структуре, как правило, являются производными витаминов, но не способны выполнять их функции в реакциях ферментативного катализа. Такие соединения называются антивитаминами. Примерами антивитаминов могут служить сульфаниламидные препараты, которые включаются вместо ПАБК в структуру фолиевой кислоты, синтезирующейся в микроорганизмах, и блокируют функции фолатзависимых коферментов. В итоге прекращается размножение чувствительных к сульфаниламидам микроорганизмов. На антивитаминном действии сульфаниламидных препаратов основано их применение в медицинской практике для лечения инфекционных заболеваний. Для лечения лейкозов и других форм рака применяют птеридин и его производные, которые вытесняют фолиевую кислоту из фолатзависимых ферментативных реакций, блокируя тем самым синтез нуклеиновых кислот, что проявляется в торможении деления клеток. Таким образом, специфическое действие антивитаминов позволило использовать их в медицинской практике для лечения бактериальных инфекций и опухолевых заболеваний. [c.168]

    ТГФ может превращаться также в дг5 дг10-метил-ТГФ -предшественник фор-ми льной формы кофермента. Формиль-ная и метильная формы кофермента необходимы для ряда реакций переноса группировок с одним атомом углерода при синтезе пуринов, пиримидинов и метионина, а также для циклических превращений производных самой фолиевой кислоты. [c.43]


Смотреть страницы где упоминается термин Фолиевая кислота, ее производные как коферменты: [c.173]    [c.279]    [c.209]    [c.247]    [c.614]    [c.124]    [c.678]    [c.298]    [c.205]    [c.110]    [c.69]    [c.66]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кофермент производные

Коферменты

Фолиевая кислота

Фолиевая кислота производные



© 2025 chem21.info Реклама на сайте