Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Темновая релаксация переносчиков

    Карапетян и др., 1963 Кононенко и др., 1967]. Из рис. 49 видно, что величина поправочного коэффициента (10.81) стремится к единице при увеличении интенсивности света (с О), причем по-разному для различных времен темновой релаксации переносчика. [c.226]

    Если кинетика темновой релаксации переносчика такова, что как величины так и величины (/+1) существенно больше единицы, искажений световых кривых не происходит. Иными словами, переносчик за время светового периода успевает достигнуть стационарного состояния. [c.227]


    Если время темновой релаксации переносчика больше, чем длительность светового периода (1> к ), и короче, чем длительность темпового периода (Ав>1), то переносчик, который восстанавливается за время темпового периода, может не успеть достичь стационарного состояния за время светового периода. В этом случае искажение формы световой кривой происходит не за счет суммации эффектов от освещения образца импульсами света, а за счет чисто кинетических эффектов, проявляющихся в течение одного светового периода. Поправочный коэффициент в этом случае равен [см. формулу (10.72)] [c.227]

    На рис. 50 представлены световые кривые заселенности окисленного состояния в зависимости от длительности темновой релаксации переносчика. По оси абсцисс на этом рисунке отложена величина ко/к, а по оси ординат — относительная величина изменения поглощения. Выбор указанного масштаба по оси абсцисс приводит к тому, что световые кривые всех переносчиков, полученных с помощью непрерывного освещения, совпадают друг с другом (кривая 1). Все световые кривые, соответствующие периодическому возбуждающему свету, лежат ниже этой кривой. На рис. 51 представлены те же кривые, но в двойных обратных координатах. [c.228]

    После включения непрерывного света в системе через некоторый промежуток времени установится стационарное состояние, при котором восстановленность всех переносчиков электронов остается неизменной во времени. Если после этого выключить свет, то начнется процесс темповой релаксации переносчиков к исходному состоянию. Пиже описан процесс темновой релаксации переносчиков, составляющих ФРЦ. [c.231]

    Общие формулы (11.15) и (11.16), описывающие процесс темновой релаксации переносчиков электронов, принимают более простой вид, если задана определенная иерархия констант скорости. [c.235]

    Далее мы кратко рассмотрим эти более простые случаи, а сейчас отметим, что процесс темновой релаксации переносчиков электронов описывается степенными членами, стоящими перед экспонентами. Это приводит к появлению своеобразной временной задержки в темновой релаксации переносчиков, которая зависит от местоположения переносчика электронов в ФРЦ. Физический смысл появления временной задержки темновой релаксации переносчиков электронов можно пояснить на примере донорной части ФРЦ. Электрон, поступивший из среды на Z) , быстро переносится на D. Для восстановления второго переносчика необходимо, чтобы из среды поступил еще один электрон, а это в среднем происходит через время 1/А после поступления первого электрона и т. д. Иными словами, временная задержка в темповом восстановлении переносчиков электронов связана с тем, что для восстановления Z)/-ro [c.235]


    Кинетика темновой релаксации переносчиков электронов описывается функцией только при насыщающей интенсивности света, когда окисленности всех переносчиков, находящихся на донорной стороне ФРЦ, близки к максимальной. Для полной характеристики кинетики необходимо знать зависимость окисленности переносчиков как функцию констант скорости. Однако кинетику редокс-состояний переносчиков качественно можно описать и не зная точно зависимости стационарной окисленности переносчиков от интенсивности света. Действительно, при низкой интенсивности света окисляется лишь переносчик электронов с самым большим номером, т. е. Z) . Из формулы (11.15) в этом случае вытекает, что кинетика темпового восстановления этого переносчика должна быть экспоненциальной — с показателем экспоненты, равным —kt. При увеличении интенсивности света происходит также окисление переносчиков электронов с меньшими номерами, что приводит согласно (11.15) к появлению степенных членов перед экспонентами и к временной задержке темпового восстановления. Таким образом, из проведенного анализа следует, что зависимость времени темпового восстановления переносчиков электронов от интенсивности света должна быть монотонно возрастающей — чем выше интенсивность предшествующего выключению света, тем больше время темпового восстановления переносчиков электронов, находящихся на донорной стороне ФРЦ. Аналогичная зависимость имеет место и для переносчиков на акцепторной стороне ФРЦ. [c.237]

    Как следует из полученных общих соотношений, кинетика ре-докс-превращений переносчиков электронов описывается суммой экспоненциальных членов, показатели которых — константы скорости переноса электронов на соответствующих участках. Однако полученные вьфажения (9.11) и (9.12), описывающие темновую релаксацию ФРЦ, не учитывают иерархии величин констант скорости, отмеченной в пункте В. С учетом этой [c.199]

    В результате первичного разделения зарядов в ФРЦ осуществляется перенос электрона от >1 к А после чего происходит перенос этого электрона в акцепторной части и заполнение освободившегося места в донорной части [см. схемы (9.8 и 9.9)]. Процесс переноса электронов в донорной части, приводящий к заполнению свободного места, можно рассматривать как перенос дырки в противоположном направлении. Сходство процессов переноса дырки в донорной и электрона в акцепторной частях ФРЦ приводят к тому, что эти процессы описываются аналогичными выражениями. Важнейшая особенность процесса темновой релаксации ФРЦ при нециклическом транспорте электронов состоит в том, что миграции дырки в донорной и электрона — в акцепторной частях ФРЦ происходят независимо друг от друга. Это позволяет полностью проанализировать кинетику темновой релаксации ФРЦ. Редокс-превращения переносчиков электронов описываются суммой экспоненциальных членов. Существенным является, однако, то, что если в исходных общих формулах (9.11) и (9.12), описывающих изменение редокс-состояний переносчиков, принимались во внимание все предшествующие стадии переноса электронов, то учет иерархии величин констант скорости (см. пункт В) приводит к возможности локального рассмотрения, для которого важны лишь константы скорости, непосредственно примыкающие к этому переносчику. В результате кинетика переноса электрона ( дырки ) может быть описана достаточно простыми соотношениями (9.13) и (9.14). Из этих формул вытекает, что время жизни переносчиков электронов в неравновесных состояниях после вспышки света тем меньше, чем ближе данный переносчик электронов находится к начальной световой стадии в цепи переноса. Такая функциональная организация ФРЦ позволяет ему, с одной стороны, быстро возвратиться в реакционноспособное состояние после очередного возбуждения, а с другой — предотвратить обратные реакции разделенных зарядов. Важнейшей особенностью этой организации является практическая необратимость стадий переноса электронов, которая обусловлена большой разницей редокс-потенциалов соседних переносчиков электронов (см. рис. 42). В данном случае имеет место [c.204]

    Если время темновой релаксации (восстановления) переносчика больше, чем длительность и светового и темпового периодов, то искажение световой кривой связано в основном с эффектом суммации амплитуд заселенностей окисленного состояния переносчика, индуцированных многими световыми импульсами. В рассматриваемом случае для интенсивностей света, для которых х<1, справедлива следующая аппроксимация поправочного коэффициента  [c.227]

    Как следует из формулы (13.6), в присутствии редокс-медиатора кинетика темновой релаксации как пигмента, так и вторичного хинона имеет двухкомпонентный характер причем медленная компонента обусловлена обменом электронами переносчиков со средой с константами к и т соответственно, а быстрая компонента обусловлена как обменом электронами переносчиков со средой к, т), так и циклическим потоком электронов (к). [c.262]


    В простейшем случае темновые и световые процессы переноса электронов характеризуются одинаковыми наборами констант скорости, отличаясь лишь световой константой скорости ко. Поэтому начальные условия должны быть согласованы с системой дифференциальных уравнений в том смысле, что они должны быть уже решениями исходной системы уравнений с параметрами, соответствующими предыдущему режиму освещения. В частности, стационарное световое распределение электронов является начальным для последующей темповой релаксации и обратно, равновесное темповое распределение электронов может являться начальным для последующих фотоиндуцированных изменений редокс-состояний переносчиков электронов. [c.195]


Транспорт электронов в биологических системах (1984) -- [ c.234 , c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Переносчик

Релаксация темновая



© 2025 chem21.info Реклама на сайте