Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление диоксида серы зависимость от температуры

    Гидродинамическая обстановка при окислении диоксида серы в КС характеризуется следующими параметрами размер зерен катализатора от 0,5 до 2,5 мм кажущаяся плотность ванадиевого катализатора 1350 кг/м линейная скорость газа 0,3—1,5 м/с высота слоя от 0,15 до 0,6 м плотность газовой смеси при рабочих температурах 400—600 °С 0,4—0,7 кг/м вязкость (3-ь4)-10 Па-с (в зависимости от температуры и состава реакционной смеси) [1]. При таких диапазонах изменений диаметра частиц, высот слоя и линейных скоростей газа расчет реактора окисления диоксида серы целесообразно проводить по двухфазной модели с полным перемешиванием в плотной фазе. Диффузионной составляющей межфазного массопереноса в выражении (5.24) для крупных частиц можно пренебречь. Тогда на основании материальных балансов (5.26), (5.27) и (5.23) для однополочного аппарата КС, на входе которого отсутствует 50з, уравнения модели примут вид [c.284]


    ОКИСЛЕНИЕ ДИОКСИДА СЕРЫ - все расчеты по процессу равновесие в реакции окисления диоксида серы, скорость реакции и ее зависимость от температуры, оптимальные температуры, превращение в слое и необходимое время контакта в изотермическом и адиабатическом режимах, определение активности катализатора по лабораторным данным, оптимизация режима разрабатываемых и действующих многослойных реакторов с различными схемами промежуточного охлаждения. Расчеты могут проводиться для процессов как в неподвижном, так и в псевдоожиженном слоях катализатора (режимы идеального вытеснения и идеального смещения). [c.469]

    Аналитическое решение этой задачи было представлено в разделе 7.4.2. здесь предлагается использовать программный блок для вычисления зависимости Хр от температуры процесса окисления и начальной концентрации диоксида серы. Условия процесса давление р = 1 атм., начальная концентрация кислорода в газе =11 %, начальная концентрация диоксида серы а принадлежит диапазону [7-10 %. Вычисление зависимости равновесной степени превращения Хр от температуры процесса и начальной концентрации диоксида приведено на рис. 8.21. [c.376]

    Экспериментальные данные представлены на графике рис. 13, на котором показана зависимость скорости реакции от температуры. Для сравнения на этом же графике приводятся результаты опытов по окислению пирита кислородом воздуха, полученные в аналогичных гидродинамических условиях. Присутствие диоксида серы в зоне реакции значительно ускоряет процесс, скорость реакции при этом практически равна скорости окисления пирита кислородом воздуха. [c.60]

    Во многих случаях изменение химического состава и каталитических свойств проявляется весьма отчетливо. На рис. 1.1 показаны изменения состава ванадиевь1х катализаторов при окислении диоксида серы в зависимости от состава реакционной смеси и температуры [c.9]

    В работе [1] изучалось влияние вынужденных колебаний концентраций на входе в реактор, где протекал процесс окисления диоксида серы на ванадиевом катализаторе. В процессе опытов циклически изменяли соотношение реагентов ЗОг/Ог вокруг средней величины, равной 0,6. Минимальное отношение концентраций ЗОгЛЗг равнялось 0,2, а максимальное — 1. Была получена экстремальная зависимость средней за период с скорости реакции от величины периода, причем максимум приходился на = 4—5 ч и величину отношения ЗОг/Ог = 0,3—0,4. Температура смеси на входе в реактор составляла 405°С. Опыты проводились при малых степенях превращения и вдали от равновесных режимов. Оценки скорости процессов, протекающих в этой системе, показали, что характерные времена протекания переходных режимов в каталитическом цикле значительно меньше длительности периодов, при которых наблюдалось заметное увеличение скорости химического превращения. Объяснение этого факта, по-видимому, надо искать в том, что, как уже обсуждалось в гл. 1, в области низких температур значительная часть ванадия находится в неактивной четырехвалентной форме, Характерные времена переходных режимов изменения концентрации связанные с кристаллизацией и ра- [c.31]


    Промышленный реактор. В СССР работают несколько промышленных реакторов для окисления диоксида серы в производстве серной кислоты. Рассмотрим кратко данные эксплуатации одного из таких реакторов [13, 14]. В соответствии с технологической схемо реакционная смесь от нагнетателя через фильтр-брыз-гоуловитель поступает на клапан-переключатель по 80г и в зависимости от положения тарелки рабочего органа этого клапана направляется в верхнюю или нижнюю часть реактора. После реактора в коммуникациях температура реакционной смеси усредняется и прн У = 100—180°С направляется на абсорбцию. [c.194]

    При окислении ЗОг образуется активный комплекс, в состав которого входят УгОб-КаЗгО,, УгОз, Уг04. Этот комплекс в процессе каталитического акта сорбирует ЗОг и Ог и десорбирует ЗОд. Как отмечено ранее (см. разд. 1.4), реакция окисления диоксида экзотермичная. Следовательно, с увеличением температуры выход три оксида серы должен уменьшаться, что графически иллюстрирует ход кривой АА на рис, 6.8, отображающей зависимость равновесных степеней превращения Р от температуры Т для многослойных контактных аппаратов. На каждом слое катали затора достигается, определенная степень окисления газа при заданных темпе ратурах на входе и выходе Гвых- [c.211]

    Сульфирование. Действие серной кислоты или олеума приводит к реакциям окисления, сульфирования, сульфонообра-зования, окислительного деалкилирования и дегидрирования алкановых фрагментов до ароматических, окислительной конденсации, сшивания. В результате образуется структурированный, ароматизированный продукт, имеющий сульфо-, сульфоно-, фенольно-гидроксильные, карбоксильные и карбонильные группы. В зависимости от природы сульфирующего агента, продолжительности и температуры реакции и группового состава нефтяного остатка получаются продукты, в которых могут преобладать определенные функциональные группы. Взаимодействие с диоксидом серы при 20 °С ведет преимущественно к окислению и в меньшей степени к сульфированию с образованием сложноэфирных, сульфо- и карбоксильных групп. [c.491]

    Сульфирование. Действие серной кислоты или олеума приводит к реакциям окисления, сульфирования, сульфонообразо-вания, окислительного деалкилирования и дегидрирования ал-кановых фрагментов до ароматических, окислительной конденсации, сшивания. В результате образуется структурированный, ароматизированный продукт, имеющий сульфо-, сульфоно-, фе-нольно-гидроксильные, карбоксильные и карбонильные группы. В зависимости от природы сульфирующего агента, продолжительности и температуры реакции и группового состава нефтяного остатка получаются продукты, в которых могут преобладать определенные функциональные группы. Взаимодействие с диоксидом серы при 20 С ведет преимущественно к окислению и в меньшей степени - к сульфированию с образованием сложноэфирных, сульфо- и карбоксильных групп. Реакции со 100%-й серной кислотой или олеумом с различной концентрацией 80з проходят с большей скоростью, возрастающей при увеличении содержания асфальтенов в нефтяном остатке. [c.272]

    Состав продуктов реакции меняется в зависимости от конверсии диметилсульфида (рис. 15.1). При температуре ниже 200 °С и х < 50 % сульфоксид и сульфон образуются из диметилсульфида по независимым друг от друга маршрутам. Суммарная селективность по сульфоксиду и сульфону равна 100 %. Но удаление диметилсульфоксида из реакционной смеси (предохранение его от доокисления) при поддержании постоянными концентраций сульфида и кислорода не приводит к уменьшению скорости образования диметилсульфо-на. Добавка диметилсульфоксида к исходной смеси также не увеличивает выход сульфона. При Т > 200 °С происходит парциальное окисление диметилсульфоксида в диметилсульфон и деструктивное окисление диметилсульфида с выделением диоксида серы, воды, формальдегида, муравьиной и метансуль-фокислоты. На основании характера зависимости селективности от конверсии при ее малых величинах трудно установить пути образования диоксида серы. [c.196]

    При взаимодействии титана с кислородом на его поверхности образуется пленка оксидов. При комнатной температуре толщина этой пленки колеблется в пределах 0,17—25 нм в зависимости от длительности взаимодействия, соответствующего 2 и 4 годам. При нагреве до 400—500 °С начинается заметное окисление титана, приводящее к образованию диоксида титана ТЮг, при этом часть кислорода растворяется в металле (до 20 %), а остальные 80 % идут на формирование окалины. До 800°С окислениый слой состоит исключительно из ТЮг со структурой рутила, а металл на границе с оксидом обогащен кислородом. Выше 800°С дополнительно образуются фазы Т10 и Т1гОз, Цвет оксидного слоя зависит от температуры и длительности окисления. При низких температурах вначале наблюдаются желтый, голубой нли фиолетовый цвета побежалостп, В интервале 500—700 С оксидный слой, еще прочно сцепленный с основным металлом, имеет темно-серый цвет. При более высокой температуре образуется слой серого цвета, который легко отслаивается. [c.247]



Смотреть страницы где упоминается термин Окисление диоксида серы зависимость от температуры: [c.14]    [c.65]    [c.272]    [c.104]   
Технология серной кислоты (1985) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Диоксид

Диоксид серы

Окисление окисление диоксида серы

Температура диоксида серы

Температура серы

зависимость от температур



© 2025 chem21.info Реклама на сайте