Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосомы число у разных видов

    Неправильное расхождение хромосом в митозе приводит к возникновению мозаиков — особей, у которых разные клетки несут различный генотип. Фенотипически проявление мозаициз-ма зависит от доли клеток различных типов, т.е. от того, на какой стадии произошло нарушение в митозе, и от жизнеспособности возникающих линий клеток (рис. 6.9). При недостатке числа хромосом клетки чаще всего нежизнеспособны. У людей с мозаицизмом влияние нормальных клеток может преобладать настолько, что несущие избыточные хромосомы клетки. могут вообще не находить выражения в фенотипе или проявляются лишь в виде отдельных симптомов. Так, около 2% больных с синдромом Дауна обнаруживают мозаицизм трисомных и нормальных клеток (47,ХХ- -21/46ХХ). При достаточно большой доле нормальных клеток психическое развитие больных нередко выше, чем при чистой трисомии по 21 хромосоме. Чаще всего встречается мозаицизм по поло- [c.139]


    Следующая фаза развития, называемая созреванием яйцеклетки, начинается лишь с наступлением половой зрелости. Под влиянием гормонов (см. ниже) происходит первое деление мейоза хромосомы снова конденсируются, ядерная оболочка исчезает (этот момент обыкновенно принимают за начало созревания), и реплицированные гомологичные хромосомы расходятся в дочерние ядра, каждое из которых содержит теперь половину исходного числа хромосом (одиако эти хромосомы отличаются от обычных тем, что состоят из двух сестринских хроматид). Но цитоплазма делится очень несимметрично, так что получаются два ооцнта второго порядка, резко различающихся по величине один представлен маленьким полярным тельцем, а другой-большой клеткой, в которой заложены все возможности для развития. И наконец, происходит второе деление мейоза две сестринские хроматиды каждой хромосомы, полученной при первом делении, отделяются друг от друга в результате процесса, сходного с анафазой митоза, с той разницей, что теперь имеется лишь половина обычного диплоидного числа хромосом. После расхождения хромосом цитоплазма большого ооцита второго порядка вновь делится асимметрично, что ведет к образованию зрелой яйцеклетки и еще одного маленького полярного тельца при этом обе клетки получают гаплоидное число одиночных хромосом. Благодаря двум несимметричным делениям цитоплазмы ооциты сохраняют большую величину, хотя они и претерпели два деления мейоза. Все полярные тельца очень малы, и они постепенно дегенерируют. На какой-то стадии описанного процесса, различной у разных видов, яйцеклетка освобождается из яичника (происходит овуляция). [c.29]

    При многих других межвидовых скрещиваниях наблюдаются явления, сходные с описанными для скрещивания между пшеницами с 28 и 42 хромосомами. Различия в числе хромосом и недостаточное сходство между хромосомами, полученными от разных видов, вызывают нарушения нормального процесса мейоза. Эти нарушения влияют на жизнеспособность половых клеток и потомства и вызывают сильную изменчивость, которая, однако, представляет собой преходящее явление. Постепенно восстанавливается равновесие и остаются лишь особи, схожие с исходными видами. Межвидовое скрещивание не вызывает каких-либо существенно новых форм, но увеличивает внутривидовую изменчивость. [c.310]

    Отдаленной гибридизацией называют скрещивания форм, относящихся к разным видам, родам и другим таксономическим единицам. Среди отдаленных скрещиваний различают две основные группы конгруентные, когда родительские формы, несмотря на различие в генах, имеют соответствующие хромосомы, которые могут нормально конъюгировать, комбинироваться у гибридов, не вызывая в больщинстве случаев значительного понижения жизнеспособности инконгруентные, при которых родительские формы имеют несоответствующие хромосомы или иное число их, в результате чего гибриды р1 оказываются частично или полностью стерильными, так как в данном случае хромосомы одного родителя не могут быть заменены хромосомами другого. [c.137]


    МИ ВЫСОКИМИ дозами радиации. Мертвые вирусы проникают через клеточную поверхность, по не размножаются. Однако изменения клеточной поверхности, индуцированные проникновением вируса, делают клетки способными сливаться друг с другом. Видовая специфичность при этом не проявляется. Клетки человека могут сливаться с клетками мыши, клетки мыши — с клетками цыпленка и т. д. В течение многих часов ядра гибридной клетки остаются обособленными (за это время можно получить ответы на вопросы, подобные тем, которые были поставлены выше). Позднее оба ядра одновременно переходят к митозу, во время которого, как и в норме, оболочки ядер исчезают, хромосомы удваиваются и разделяются. Когда ядерная оболочка образуется вновь, возникают два гибридных ядра и дочерние клетки отделяются друг от друга. Гибридное ядро продолжает делиться, и возникает клон гибридных клеток. Такие клетки нельзя назвать стабильными. В течение последующих ядерных делений часть хромосом постепенно утрачивается, и число их сокращается до стабильного диплоидного набора. Если при гибридизации использованы клетки разных видов, то теряются преимущественно хромосомы одного вида. Например, в гибридных клетках человека и мыши постепенно утрачиваются хромосомы человека. [c.229]

    АЛЛОПОЛИПЛОИДИЯ. Аллополиплоидия возникает в случае удвоения числа хромосом у стерильного гибрида, в результате чего он становится фертильным. Гибриды Fi получаемые при скрещиваниях между разными видами, обычно стерильны, так как их хромосомы не могут образовывать гомологичные пары во время мейоза. Это явление называют гибридной стерильностью. Однако если число хромосом становится кратным их исходному гаплоидному числу, например, 2 (П1 + Пг), 3 (ni + П2) и т. д. где ni и пг — гаплоидные числа хромосом у родительских видов, то возникает новый вид, который дает фертильных гибридов при скрещивании с такими же полиплоидами, но стерилен при скрещивании с одним из родительских видов. [c.211]

    Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при 1-м делении мейоза каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом (рис. 15-9 А). Из одного только этого факта следует, что клетки любой особи могут в принципе образовать 2" генетически различающихся гамет, где п-гаплоидное число хромосом. Нанример, у человека каждый индивидуум способен образовать по меньшей мере 2 = 8,4-10 генетически различных гамет. Однако на самом деле число возможных гамет неизмеримо больше из-за кроссинговера (перекреста) - процесса, происходящего во время длительной профазы 1-го деления мейоза, когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в двух-трех точках. Как показано на рис. 15-9 Б, такой процесс перетасовывает гены любой хромосомы в гаметах. [c.17]

    Гены, лежащие в разных хромосомах, не сцеплены между собой, в отличие от генов, локализованных в одной хромосоме, которые сцеплены друг с другом. Для каждого вида характерно определенное число генов число групп сцепленных между собой генов соответствует числу хромосом у данного вида. Чем меньше число групп сцепления при постоянном числе генов, тем больше число генов в каждой группе сцепления и тем формально менее справедлив закон независимого распределения. Это явление было впервые отмечено двумя английскими генетиками — У. Бэтсоном (W. Bateson) и Р. К. Пеннетом (R. С. Punnett) — в 1906 г. Когда эти авторы скрещивали растения душистого горошка, имевшие [c.101]

    Под словом ген я имею в виду генетическую единицу, которая достаточно мала, чтобы сохраняться на протяжении многих поколений и распространяться вокруг в большом числе копий. Это не жесткое определение типа все или ничего , но определение несколько расплывчатое, подобное таким определениям, как большой или старый . Чем больше вероятность того, что данный участок хромосомы будет разорван при кроссинговере или изменится в результате разного рода мутаций, тем меньше он заслуживает названия гена в том смысле, который я вкладываю в этот термин. По-видимому, под это определение подпадает цистрон, но это могут быть и крупные единицы. Десяток цистронов может располагаться в хромосоме в такой тесной близости, что для наших целей их можно считать одной долгоживущей генетической единицей. Хорошим примером служит кластер, определяющий мимикрию у бабочек. Когда цистроны покидают одно тело и входят в следующее, используя сперматозоид или яйцеклетку для путешествия в следующее поколение, они, вероятно, могут обнаружить на своем маленьком кораблике своих ближайших соседей по предыдущему путешествию — старых товарищей, вместе с которыми они совершили долгое путешествие, начавшееся в телах очень далеких предков. Соседние цистроны, лежащие в той же хромосоме, образуют тесно сцепленную группу попутчиков, которым лишь в редких случаях не удается взойти на борт того же судна , когда наступает время мейоза. [c.32]

    Наряду с избытком или недостатком отдельных хромосом, характерных для данного вида, иногда встречаются так называемые добавочные или В-хромосомы. Эти добавочные хромосомы почти полностью состоят из гетерохроматина. Число их может варьировать и они, единожды появившись, имеют тенденцию накапливаться из поколения в поколение. Правда, избыток В-хромосом неблагоприятно влияет на развитие организма и таким образом особи с большим числом добавочных хромосом элиминируются. В-хромосомы описаны у многих растений, некоторых животных, например у лис, некоторых мышей, ящериц, насекомых. Число В-хромосом варьирует в широких пределах, например, у кукурузы их от 1 до 22. Растения разных популяций различаются по числу и частоте встречаемости В-хромосом. Значение их, несмотря на интенсивное изучение, пока не выяснено. [c.365]


    Картирование хромосом, основанное на получении гибридных соматических клеток. Для локализации клонированного сегмента в определенной хромосоме используют межвидовые соматические гибриды. Обычно такие гибридные соматические клетки содержат полный набор хромосом одного вида (реципиента) и только одну или небольшое число хромосом второго вида (донора). Чтобы судить о наличии данного гена в определенной донорной хромосоме, анализируют группу разных линий гибридных клеток и устанавливают корреляцию между присутствием тестируемого гена и наличием специфической хромосомы. [c.336]

    Для одной группы одноклеточных цианобактерий описано размножение путем множественного деления. Оно начинается с предварительной репликации хромосомы и увеличения размеров вегетативной клетки, которая затем претерпевает ряд быстрых последовательных бинарных делений, происходящих внутри дополнительного фибриллярного слоя материнской клеточной стенки. Это приводит к образованию мелких клеток, получивших название баеоцитов, число которых у разных видов колеблется от 4 до 1000. Освобождение баеоцитов происходит путем разрыва материнской клеточной стенки (рис. 20, Г). Таким образом, в основе множественного деления лежит принцип равновеликого бинарного деления. Отличие заключается в том, что в этом случае после бинарного деления не происходит роста образовавшихся дочерних клеток, а они снова подвергаются делению. [c.60]

    Подобные эксперименты были проведены и на многих других эукариотических организмах. В настоящее время создается впечатление, что все эукариотические хромосомы содержат повторяющиеся последовательности ДНК (повторы), в то время как у прокариот они, как правило, отсутствуют. Число высоко-и умеренноповторяющихся последовательностей варьирует у разных видов эукариот. [c.882]

    Однако не всегда четырем гомологичным хромосомам удается найти друг друга и образовать квадривалент. Иногда они образуют группу из трех хромосом (так называемый три-валент см. стр. 323) и унивалент или два бивалента. Как правило, среднее число квадривалентов на одну клетку ниже их максимально возможного числа. В этом отнощении у разных видов автотетраплоиды ведут себя по-разному. У одних число квадривалентов больше, у других — значительно меньше, а в ряде случаев образуются почти исключительно биваленты. Большей частью примерно половина хромосом образует квадриваленты. [c.319]

    Половые клетки растения или животного содержат п хромосом. Это число широко варьирует у разных видов — от одной хромосомы до нескольких сотен, но оно постоянно для каждого вида, например у человека п 24. Когда при оплодотворении сперматозоид сливается с яйцеклеткой, образуется клетка, содержащая 2п хромосом так, для человека 2п 48 . Хромосомы половой клетки, как правило, все разные и в благоприятных случаях их можно различить по величине и форме под микроскопом. Каждая хромосома, внесенная мужской половой клеткой (за одним исключением), в основном идентична гомологична) соответствующей хромосоме, внесенной женской половой клеткой. Одна пара хромосом — половые хромосомы у многих животных, включая человека и плодовую мушку дрозофилу, — является исключением в том отношении, что в оплодотворенном яйце (или зиготе), которое разовьется в мужской организм, две хромосомы, составляющие пару, различны можно отличить Х-хромосому, внесенную яйцеклеткой, и У-хромосому, внесенную спермием. С другой стороны, зигота, которая должна дать женский организм, имеет две Х-хромосомы. Имеются спермин двух типов одни несут Х-хромосому и дают начало зиготам, развивающимся в самок, другие несут У-хромосому и образуют зиготы, дающие самцов. У птиц и бабочек гетерогаметная самка имеет хромосомы XY. Семенные растения и многие низшие животные не всегда имеют механизм определения пола типа XV. [c.105]

    Нарушения мейоза часто бывают следствием того, что скрешивающиеся между собой виды имеют разное число хромосом. Если один из видов (А) имеет, например, 14 хромосом, а другой (Б)—28, то у гибрида будет 21 хромосома, 7 от [c.304]

    В начале прометафазы, когда распадается ядерная оболочка, к каждой хроматиде присоединяется отдельная группа нитей веретена. Эти нити, состоящие из микротрубочек, расходятся от кинетохоров каждой хромосомы в противоположных направлениях (рис. 11-48). Они служат для ориентирования хромосом относительно веретена в метафазе, а позднее, в анафазе-для передачи сил, заставляющих хроматиды двигаться к противоположным полюсам. Число микротрубочек, ассоциированных с каждым кинетохором, у разных видов весьма различно у некоторых грибов с кинетохором связана лишь одна микротрубочка, а в клетках человека-от 20 до 40. [c.181]

    При скрещивании двух разных видов или родов обычно получается бесплодное потомство, так как у них вследствие неродственных геномов конъюгация хромосом нормально проходить не может, и образуются нежизнеспособные гаметы. Представим себе что скрещивают два вида, имеющих разные геномы, каждый из-которых содержит по семи хромосом. Обозначим первый вид АА, а второй — ВВ. Гибрид между ними будет иметь 14 хромосом и геномы АВ. В связи с тем, что у такого гибрида все хромосомы негомологичные, конъюгация между ними невозможна, и в метафазе I мейоза образуется 14 унивалентов. В дальнейщем такие хромосомы между дочерними клетками микро- и макроспор будут распределяться беспорядочно, и поэтому образуются гаметы с различным числом хромосом от О до 14. Такие гаметы нел<нзне-способны, и гибрид окажется стерильным. [c.240]

    Все трисомики имеют пониженную жизнеспособность и плодовитость. Это объясняется нарушением у них мейоза, протекающего с образованием тривалентов и унивалентов, и, следовательно, большим числом ненормально развитых гамет. Наличие одной лишней хромосомы у разных родов растений проявляется по-разному одни более, другие меиее чувствительны к трисомии. Дикие растеиия, а также имеющие большое число хромосом в меньшей степени реагируют на нее, чем малохромосомные и культурные растения. Моносомики у диплоидных видов в большинстве случаев нежизнеспособны, их можно получить только по отдельным хромосомам. У полиплоидных видов моносомики значительно более жизнеспособны, утрата одной хромосомы у них сказывается менее чувствительно, чем у диплоидов. [c.247]

    Выше были приведены примеры различий между хромосомами, которые касались их внешнего вида (фиг. 7) здесь же мы покажем, что хромосомы обладают также и качественными различиями и несут разные наборы наследственных единиц, называемых генами. Для некоторых организмов удалось показать, что каждая хромосома содержит много разных генов и что эти гены локализованы в определенных участках хромосом. Другими словами, хромосомы дифференцированы по длине. Место в хромосоме, занимаемое данным геном, называют локусом. Было обнаружено, что в некоторых случаях у особей, относящихся к одному виду или группе, в определенном локусе хромосомы располагаются одинаковые гены. Однако во многих случаях локус не отличается подобным постоянством и в нем располагаются тот или другой из числа нескольких различных, хотя и сходных между собой генов. Такие различные состояния локуса носят название аллелей. Часто для определенного локуса известно лишь два аллёля, однако известно немало случаев, когда данный локус встречается в целом ряде различных состояний, т. е. когда мы имеем дело со множественными аллелями. [c.42]

    Проблема отсутствия рекомбинации у отдаленных гибридов может быть решена посредством удвоения у них количества хромосом. В этом случае каждая хромосома получит себе пару, и процесс образования половых клеток будет протекать нормально. Такие гибриды, объединяющие в своем геноме полные (т.е. двойные) наборы хромосом разных видов (их называют амфидиплоидами), весьма широко распространены в природе. Наиболее известные из них — пшеница, слива. Селекционер, задумавший получить амфидиплоид с участием культурного и дикого вида, должен учитывать, что у этого гибрида помимо селекционно-ценных генов дикого вида будет присутствовать и полный набор нежелательных дикарских генов. Избавиться от них можно только путем возвратных скрещиваний с культурным видом, в ходе которых геном дикого вида замещается культурным и лишь отдельные ценные гены дикого вида сохраняются благодаря селекции. Однако эта процедура может быть эффективной только в случае относительно высокой гомологии хромосом скрещиваемых видов (то есть они должны быть относительно близкородственными). Круг замкнулся. Не случайно поэтому единственным амфидип-лоидом, представляющим селекционную ценность из числа полученных искусственно, остается тритикале — гибрид между двумя культурными видами пшеницей и рожью. [c.22]

    Мейоз — способ деления клетки, лежащий в основе редукции числа хромосом 2п -> п. Сходство и различия митоза и мейоза приведены в табл. 4.3. Биологическое значение мейоза впервые оценил А. Вейсман, который отметил, что редукция числа хромосом в мейозе и последующее оплодотворение лежат в основе поддержания постоянства числа хромосом вида из поколения в поколение. Кроме того, мейоз обеспечивает комбинативную изменчивость. Поскольку хромосомы разных бивалентов расходятся в анафазе I независимо друг от друга, это приводит к рекомбинации родительских наборов хромосом. В мейозе происходит также рекомбинация участков гомологичных хромосом, судя по появлению хиазм на стадии диплотены — пахитены (подробнее см. гл. 7). [c.75]

    Если полиплоиды получают путем увеличения числа наборов хромосом (точнее, геномов) одного вида растений, то их принято называть автополиплоидами, если же на основе разных видов растений — аллополиплоидами. Во втором случае происходит скрещивание разных видов между собой, например ржи и мягкой пшеницы, т. е. образуется отдаленный гибрид с 2п = 28 (21 + 7=28). Используя колхицин, можно увеличить вдвое число хромосом и получить из ржано-пшеничного гибрида тетраплоид с 56 хромосомами. Кратное увеличение наборов хромосом у отдаленного гибрида называется амфидипло-идией. [c.184]

    При клеточной дифференцировке, происходящей в процессе эмбрионального развития, транскрипция различных генов претерпевает последовательные изменения как качественного, так и количественного характера. Каждая стадия дифференциации включает в себя активацию очень большого числа структурных генов. Образование индивидуальных тканей связано с синтезом мРНК, которые кодируют белки, характерные для данной ткани. Несмотря на то. что во всех тканях одного и того же организма имеется полный набор хромосом и генов, в одних видах клеток наблюдается транскрипция тех генов, которые не транскрибируются в других. Это означает, что и в процессе дифференцировки и функционирования клеток должны существовать способы контроля транскрипции, необходимые для активации или репрессии определенных генов. Существует несколько принципиальных различий в условиях транскрипции у про- и эукариот количество ДНК у эукариот в расчете на клетку в несколько тысяч раз больше, чем у прокариот, и если у бактерии существует одна хромосома, то у эукариотических клеток гены распределены между разными хромосомами. Кроме того, в эукариотах транскрибируется хроматин, расположенный в ядре, а синтезированная информационная РНК транспортируется в цитоплазму, тогда как у бактерий ядра нет и синтезы РНК и белка не разделены в пространстве. [c.416]

    Клетки эмбриональных тканей и тканей новорожденных используются в качестве исходного материала для выделения специфических типов клеток, которые можно исследовать биохимически либо использовать для создания клеточных культур. Многие клетки растений и животных выживают и часто способны пролиферировать в культуральной чашке при наличии питательной среды соответствующего состава. Разные типы клеток нуждаются в различных питательных веществах, в том числе в одном или нескольких белковых факторах роста. Большинство клеток животных погибает после конечного числа белений, но иногда в культуре клеток спонтанно возникают редкие варианты, способные поддерживаться бесконечно долго в виде клеточных линий. Клеточные линии можно использовать для получения клонов, которые происходят из одиночной клетки-предшественника. Так, можно выделить мутантные клетки, дефектные по одному белку. Можно осуществить слияние различных типов клеток с образованием гетерокарионов (клеток с двумя ядрами), из которых в конечном счете образуются гибридные клетки (ядра клеток которых слились воедино). Гибридные клетки можно использовать для изучения взаимодействия компонентов двух различных клеток. Кроме того, этот метод позволяет ответить на вопрос, в каких конкретно хромосомах находятся те или иные гены. [c.208]

    Разное число хромосом у скрещиваемых видов, приводящее к образованию унивалентов. При скрещивании разнохромосомных видов у гибридов Fi нарушается парность хромосом, в результате чего образуются нежизнеспособные гаметы. Рассмотрим этот случай на примере скрещивания пшеницы мягкой (2п = 42) с твердой (2л = 28). В соматических клетках у таких гибридов будет 35 хромосом (21 + 14). При гаметогенезе 14 хромосом одного вида конъюгируют с 14 хромосомами другого, образуя 14 бивалентов 7 хромосом мягкой пшеницы, не находя себе партнеров, остаются одиночными, их называют унивалентными, или унивалентами (рис. 105). В анафазе I мейоза бивалентные хромосомы расходятся в дочерние клетки поровну, в каждую по 14. Уиивалентные же 7 хромосом, оказавшись лишними , будут случайно распределяться между сортами в разных количествах. Таким образом, гаметы могут иметь разное число хромосом 14, 15, 16, 17, 18, 19, 20 и 21. Большинство из них с излишком или недостатком хромосом по сравнению с числом, свойственным данному виду, оказываются нежизнеспособными. Это и определяет высокую стериль- [c.263]

    При слиянии лсизнеспособных гамет с разными числами хромосом образуются гибриды Fi, в клетках которых содержится от 28 до 42 хромосом. Чем меньшее у этих гибридов число хромосом отклоняется от данных цифр, т. е. чем меньше выражена у них ане-уплоидность, тем они более плодовиты. Наиболее жизнеспособными будут гибриды с числом хромосом 28 и 42, а затем анеуплоиды с 27—29 и 41—43 хромосомами. В последуюш,их поколениях при самоопылении гибридов число анеуплоидных растений будет быстро уменьшаться, а число растений с хромосомными наборами исходных видов возрастать. По внешнему виду 42-хромосомные гибриды окажутся похожими на пшеницу мягкую, а 28-хромосом-ные — на твердую. Но это сходство не будет полным. В результате рекомбинации целых хромосом и обмена их участками во время конъюгации 42-хромосомные гибриды будут иметь отдельные признаки пшеницы твердой, а 28-хромосомные — мягкой. [c.264]

    Формы, возникшие в результате умножения хромосом одной пары, получили название автоплоидных. Но известна и другая форма полиплоидии — аллоплоидия, при которой умножается число хромосом двух разных пар. Шведский генетик А. Мюнтцинг скрестил два вида пикульиика, каждый из которых имеет по 16 хромосом, и получил синтетическую гибридную полиплоидную форму с 32 хромосомами, Она оказалась по своей морфологии идентична третьему виду пикульника, встречающемуся в природе, и также имеющему 32 хромосомы. Надо полагать, что этот вид произошел в результате естественной гибридизации. [c.278]


Смотреть страницы где упоминается термин Хромосомы число у разных видов: [c.396]    [c.116]    [c.68]    [c.304]    [c.76]    [c.27]    [c.88]    [c.293]    [c.247]    [c.152]    [c.249]    [c.249]    [c.48]    [c.57]    [c.255]    [c.368]    [c.88]    [c.208]    [c.17]    [c.288]   
Популяционная биология и эволюция (1982) -- [ c.93 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2024 chem21.info Реклама на сайте