Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Когда происходит кроссинговер

    Когда гены расположены не очень далеко друг от друга, частоту рекомбинации можно рассматривать как вероятность того, что рекомбинация произойдет между ними. Такая оценка позволяет определить, независимо ли друг от друга происходят кроссинговеры в одной хромосоме. Если два акта рекомбинации происходят независимо, то ча- [c.137]

    При кроссинговере происходит разрьш двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются наперекрест (процесс гепетической рекомбинации). То, что известно о деталях молекулярного механизма этого процесса, в общих чертах представлено в главе 5. Рекомбинация происходит в профазе 1-го деления мейоза, когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности (см. ниже). Гораздо позже в этой [c.17]


    Когда происходит кроссинговер  [c.139]

    Легко представить себе, что процесс, изображенный на фиг. 244, обусловливает также генетическую рекомбинацию, происходящую в результате кроссинговера между гомологичными (а не сестринскими) хромосомами в первом делении мейоза (фиг. 11). Иными словами, возможно, что в интерфазе, предшествующей первому делению мейоза, когда молекулы ДНК гомологичных хромосом находятся в растянутой форме и подвергаются репликации, в них происходят разрывы с последующим перекрестным воссоединением фрагментов. В таком случае конъюгация хромосом (т. е. попарное сближение гомологичных хромосом), наблюдаемая в профазе первого деления мейоза, в действительности должна следовать за генетическими обменами хромосомной ДНК, а не предшествовать им. [c.501]

    Размер кластера генов может возрасти или уменьшиться в результате неравного кроссинговера, когда происходит рекомбинация между неаллельными генами, как показано на рис. 21.3. Обычно рекомбинация происходит (как описано в гл. 1) между соответствующими друг другу последовательностями ДНК, расположенными точно одна напротив другой в двух гомологичных хромосомах. Однако, когда в каждой хромосоме имеются две копии гена, напротив друг друга могут случайно оказаться последовательности разных копий, что сделает возможным неправильное спаривание между ними. (Для этого необ- [c.270]

    В результате постоянного увеличения и уменьшения числа единиц при неравном кроссинговере могло получиться так, что все повторяющиеся единицы данного кластера произошли из относительно небольшого их числа в исходном кластере. Различие спейсеров по длине согласуется с предположением о том, что в неравном кроссинговере участвуют спейсеры, содержащие внутренние неправильно спаривающиеся участки. Это может объяснить постоянство нуклеотидных последовательностей генов по сравнению с их вариабельностью в спейсерах. Гены подвергаются воздействию естественного отбора, когда происходит амплификация отдельных повторяющихся единиц кластера однако спейсеры отбору не подвергаются и могут накапливать изменения. [c.296]

    Морган предположил, что причина генетического сцепления факторов-это просто механический результат их локализации в одной хромосоме . Он предположил также, что образование генетических рекомбинантов можно отождествить с процессом кроссинговера, наблюдаемого в мейозе. В раннем мейозе, на стадии, когда четыре копии каждой хромосомы представлены в виде бивалента, между близко расположенными (конъюгировавшими) гомологичными парами происходит попарный перекрест генетического материала, названный хиазмой. Этот процесс схематически изображен на рис. 1.9. [c.14]


    При кроссинговере происходит разрыв двойной снирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются наперекрест (процесс генетической рекомбинации). То, что известно о деталях молекулярного механизма этого процесса, в общих чертах представлено в гл. 5. Рекомбинация происходит в профазе 1-го деления мейоза, когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности (см. ниже). Гораздо позже в этой растянутой профазе становятся ясноразличимы две отдельные хроматиды каждой хромосомы. В это время видно, что они связаны своими центромерами и тесно сближены друг с другом но всей длине. Два гомолога остаются связанными в тех точках, где произошел кроссинговер между отцовской [c.17]

    Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при 1-м делении мейоза каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом (рис. 15-9 А). Из одного только этого факта следует, что клетки любой особи могут в принципе образовать 2" генетически различающихся гамет, где п-гаплоидное число хромосом. Нанример, у человека каждый индивидуум способен образовать по меньшей мере 2 = 8,4-10 генетически различных гамет. Однако на самом деле число возможных гамет неизмеримо больше из-за кроссинговера (перекреста) - процесса, происходящего во время длительной профазы 1-го деления мейоза, когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в двух-трех точках. Как показано на рис. 15-9 Б, такой процесс перетасовывает гены любой хромосомы в гаметах. [c.17]

    В этом можно убедиться, если на схеме рис. 7.5 рассматривать только расщепление по гену В/Ь, дистальному от центромеры. В случае кроссинговера на участке ген В — центромера не совпадает редукция по центромере и редукция по гену В/Ь. Редукция по центромере происходит при мейозе 1, а редукция по генетическому фактору — при мейозе П. Редукция по центромере и по гену В/Ь совпадает только тогда, когда на участке Ген-центромера нет [c.149]

    Б. Пахитена, Синапсис завершается, когда синаптоне-мальные комплексы связывают попарно все гомологичные аутосомы. X- и Y-хромосомы конъюгируют не полностью. Происходит кроссинговер между тяжами хроматина (хроматидами), которые на таких препаратах неразличимы. [c.20]

    При образовании цитогет все хлоропластные маркеры, вводимые в скрещивание, наследуются не по материнской линии, а от обоих родителей, т. е. /п/+ и mt . В отличие от ядерных генов, обнаруживающих мейотическое расщепление в тетрадах (октадах) 2 2 (4 4), хлоропластные гены у цитогет расщепляются не в мейозе, а при каждом митотическом делении зооспор, пока не выйдут в гомозиготу. Расщепление происходит в результате обменов на стадии четырех нитей, т. е. в момент, когда молекулы хлоропластной ДНК уже удвоены, но еще не разошлись в дочерние клетки. При этом наблюдаются реципрокная рекомбинация, как при митотическом кроссинговере на участке ген — центромера, и конверсия (см. гл. 8). Роль центромеры при этом играет точка прикрепления хлоропластной ДНК к мембране, управляющая расхождением нитей ДНК при делении пластиды. [c.231]

    Г., контролирующие разные признаки, иногда передаются потомству независимо друг от друга. Это происходит в том случае, если они находятся в разных хромосомах. Когда Г. находятся в одной хромосоме, они обычно передаются потомству вместе (т. наз. сцепление Г.). Это правило может нарушаться из-за кроссинговера (см. Рекомбинация генетическая), когда при образовании половых клеток отцовские и материнские хромосомы разрываются и образовавшиеся концы соединяются крест-накрест. После рекомбинации Г., первоначально находивыгаеся в одной хромосоме, оказываются в разных. Существование кроссинговера между гомологичными хромосомами позволяет определять относительное расположение Г. на хромосоме, т.е. составлять генные карты чем дальше друг от друга [c.517]

Рис. 14.3. Образование гамет у тетраплоида триплекса (АААа) при условии максимальной двойной редукции. Вероятность кроссинговера на участке ген — центромера равна 1. Конъюгация происходит тетравалентами. Цифры 1—4 — номера центромер. I и II — типы расхождения центромер в анафазе 1. Тип II может быть получен двумя способами когда у полюсов группируются центромеры 1, 3 к 2, 4 (способ показан на рисунке), а также I, 4 и 2, 3 (не показан). Поэтому тип II должен встречаться в два раза чаще, чем тип I, который может быть получен только одним способом Рис. 14.3. <a href="/info/98247">Образование гамет</a> у тетраплоида триплекса (АААа) при <a href="/info/1155515">условии максимальной</a> <a href="/info/1386333">двойной редукции</a>. <a href="/info/1354927">Вероятность кроссинговера</a> на участке ген — центромера равна 1. Конъюгация происходит тетравалентами. Цифры 1—4 — номера центромер. I и II — типы расхождения центромер в анафазе 1. Тип II может быть получен двумя способами когда у полюсов группируются центромеры 1, 3 к 2, 4 (<a href="/info/1778251">способ показан</a> на рисунке), а также I, 4 и 2, 3 (не показан). Поэтому тип II должен встречаться в два раза чаще, чем тип I, который может быть получен только одним способом
    Кроссинговер происходит на стадии зигонемы, т. е. тогда, когда уже произошла редупликация и образовалась тетрада хроматид. Тогда на двух из четырех хроматид, и притом на гомологичных участках, должны одновременно возникнуть разрывы, т. е. всего два разрыва, вслед за чем происходит перекрестное склеивание . Однако вероятность того, что на гомологичных участках одновременно произойдет два разрыва, очень мала. Создается впечатление, что в этом процессе принимает участие фермент (некая специфическая рекомбиназа). Этот вывод не взят с потолка. Известно, например, что у плодовой мушки дрозофилы кроссинговер наблюдается только у самок во время образования яйцеклеток, а у самцов отсутствует. Подобный факт можно счесть свидетельством существования какого-то зависимого от пола фермента. [c.132]


    Миграция ветви превращает эту структуру в молекулу с двумя рекомбинантными соединениями. В тех случаях, когда оба соединения разрешаются одним и тем же способом, например разрезанием внутренних цепей, происходит высвобождение исходных, не подвергавшихся крос-синговеру молекул. Если же два соединения разрешаются противоположным способом, т.е. в одном случае разрез вносится на внутреннюю цепь, а в другом-на внешнюю, происходит генетический кроссинговер. [c.446]

    Если в одном из Ig -аллелей V- и J-сегменты стыковались неудачно, то возможна ситуация, когда другой V-ren совершит скачок и соединится с одним из оставшихся сегментов J, расположенных позади того, который перестроился ранее. Если такое соединение происходит путем неравного кроссинговера, Ig -локус, образованный в результате неправильной дупликации, все же способен обеспечивать соединение V- и С-генов, расположенных по обе стороны от этой дупликации. Эта модель объясняет природу необычных структур, обнаруживаемых в локусах с непродуктивной перестройкой. Они также могут быть объяснены сменяющими друг друга сериями внутрихро-мосомных делеций и инверсий. В соответствии с данной моделью клетка осуществляет рекомбинацию V- и С-генов до тех пор, пока не будет достигнута продуктивная перестройка. Аллельное исключение обусловливается подавлением дальнейшей перестройки сразу же после образования активной цепи. Эта обратная связь осуществляется независимо для локусов тяжелых и легких цепей (гены тяжелых цепей обычно перестраиваются первыми), однако в случае легких цепей это правило должно выполняться в равной мере для обоих семейств (клетки могут иметь активную цепь либо каппа-, либо лямбда-типа). Вероятно, каппа-гены перестраиваются раньше, и перестройка генов лямбда происходит только в том случае, если обе попытки перестроить каппа-гены оказались неудачными. [c.512]

    Кроссинговер происходит на четырехцепочечной, или тетрадной, стадии мейоза, когда каждая хромосома состоит из двух сестринских хроматид (см. гл. 1). В этом можно убедиться, анализируя генотипы женского потомства самок дрозофил, несущих сцепленные Х-хромосомы и гетерозиготных по мутации, локализованной в этой хромосоме. [c.139]

    При мейозе в результате двух последовательных клеточных делений, следующих за одним циклом репликации ДНК. из одной диплоиОной клетки образуются четыре гаплоидные. У животных начальные фазы формирования яйцеклетки и сперматозоида сходны. В обоих случаях в мейозе доминирует профаза I, которая может занимать 90% всего времени мейоза. В этот период каждая хромосома состоит из бвух тесно сближенных сестринских хроматид. Кроссинговер (перекрест) между хромосомами осуществляется на стадии пахитены в профазе /. когда конъюгация каждой пары гомологичных хромосом закрепляется синаптонемальным комплексом. Как полагают, каждый перекрест происходит при участии крупного рекомбинационного узелка и привоОит к образованию хиазмы, сохраняющейся вплоть Оо анафазы I. В результате первого деления мейоза в каждую дочернюю клетку попадает по одной хромосоме из каждой пары гомологов, состоящих в это время из соединенных сестринских хроматид. Затем без репликации ДНК быстро протекает второе деление, при котором каждая сестринская хроматида попадает в отдельную гаплоидную клетку. [c.25]

    Генетическая детерминация. Генетический анализ показал, что мимикрия у бабочек контролируется кластером тесно сцепленных генов, супергеном , кроссинговер внутри которого происходит крайне редко. При этом гаплотипы, подобно набору аллелей с широким плейотропным эффектом, влияют одновременно на окраску тела, форму и рисунок крыла. Имеются, однако, убедительные данные о том, что кроссинговер внутри кластера все же идет. Наиболее вероятная последовательность локусов такова, что гены, контролирующие окраску тела (В) и наличие или отсутствие хвоста (Т), расположены в противоположных концах генного кластера, а гены, контролирующие рисунок на задних крыльях (W), окраску эполет (Е) и рисунок на передних крыльях (F), расположены, по-видимому, между ними. Вероятная последовательность локусов определена на основе сравнения частот кроссоверов и некроссо-веров в исследованных популяциях. Таким образом, логика в рассуждении в этом случае та же, что и у Фишера, когда он обосновывал последова- [c.223]

    К. Мазер предложил рассматривать вероятность двойной редукции (а) как произведение вероятностей. а = е- а, где е — частота эквационного расхождения факторов Л и а при 1 делении мейоза. Она определяется частотой рекомбинации на участке ген — центромера и может варьировать от О до 1, когда между геном и центромерой регулярно происходит один обмен (50 % кроссинговера). Вторая величина — а — частота генетического нерасхождения, которая определяется вероятностью того, что в анафазе 1 обе кроссоверные хроматиды отойдут к одному полюсу. Это служит предпосылкой для образования в дальнейшем гаметы аа. Очевидно, максимальное значение генетического нерасхождения— 1/3 (см. рис. 14.3). Непременным условием при этом являются конъюгация гомологов квадривалентами или бивалентами в случайных сочетаниях и случайное расхождение центромер. [c.357]

    Изомеризация, как предполагают, необходима дпя того, чтобы между двумя хромосомами мог произойти кроссинговер. Рис. 5-64 показывает, как мог бы протекать этот процесс между двумя сестринситми хроматидами в митотических клетках или между несестринскими хроматидами во время мейоза. Хотя изомеризация должна происходить спонтанно с определенной частотой, в клетках она, возможно, ускоряется или регулируется каким-либо иным путем. Какая-то регуляция осуществляется, по всей вероятности, во время мейоза, когда две спаривающиеся двойные спирали ДНК оказьшаются прижатыми одна к другой в синаптонемальном комплексе. [c.309]


Смотреть страницы где упоминается термин Когда происходит кроссинговер: [c.36]    [c.20]    [c.38]    [c.24]    [c.20]    [c.27]    [c.28]    [c.350]    [c.143]    [c.301]    [c.309]    [c.23]    [c.83]    [c.71]    [c.71]    [c.40]    [c.301]    [c.17]    [c.17]    [c.23]   
Смотреть главы в:

Современная генетика Т.1 -> Когда происходит кроссинговер




ПОИСК







© 2025 chem21.info Реклама на сайте